utils.py created
Browse files
utils.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import requests
|
3 |
+
import time
|
4 |
+
from typing import Optional
|
5 |
+
|
6 |
+
def load_environment():
|
7 |
+
"""
|
8 |
+
Attempt to load environment variables with error handling.
|
9 |
+
|
10 |
+
Returns:
|
11 |
+
Optional[str]: Hugging Face Token or None
|
12 |
+
"""
|
13 |
+
try:
|
14 |
+
from dotenv import load_dotenv
|
15 |
+
load_dotenv()
|
16 |
+
except ImportError:
|
17 |
+
print("python-dotenv not installed. Ensure HF_TOKEN is set in environment.")
|
18 |
+
|
19 |
+
return os.getenv("HF_TOKEN")
|
20 |
+
|
21 |
+
def query_hf_api(
|
22 |
+
prompt: str,
|
23 |
+
model_url: str = "https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-xl-base-1.0",
|
24 |
+
max_retries: int = 3
|
25 |
+
) -> Optional[bytes]:
|
26 |
+
"""
|
27 |
+
Query the Hugging Face Inference API with robust error handling and retry mechanism.
|
28 |
+
|
29 |
+
Args:
|
30 |
+
prompt (str): Text prompt for image generation
|
31 |
+
model_url (str): URL of the Hugging Face model
|
32 |
+
max_retries (int): Maximum number of retry attempts
|
33 |
+
|
34 |
+
Returns:
|
35 |
+
Optional[bytes]: Generated image bytes or None
|
36 |
+
"""
|
37 |
+
# Validate inputs
|
38 |
+
if not prompt or not prompt.strip():
|
39 |
+
raise ValueError("Prompt cannot be empty")
|
40 |
+
|
41 |
+
# Load token
|
42 |
+
HF_TOKEN = load_environment()
|
43 |
+
if not HF_TOKEN:
|
44 |
+
raise ValueError("Hugging Face token not found. Set HF_TOKEN in .env or environment variables.")
|
45 |
+
|
46 |
+
# Prepare headers
|
47 |
+
headers = {
|
48 |
+
"Authorization": f"Bearer {HF_TOKEN}",
|
49 |
+
"Content-Type": "application/json"
|
50 |
+
}
|
51 |
+
|
52 |
+
# Payload with additional configuration
|
53 |
+
payload = {
|
54 |
+
"inputs": prompt,
|
55 |
+
"parameters": {
|
56 |
+
"negative_prompt": "low quality, bad anatomy, blurry",
|
57 |
+
"num_inference_steps": 50,
|
58 |
+
}
|
59 |
+
}
|
60 |
+
|
61 |
+
# Retry mechanism
|
62 |
+
for attempt in range(max_retries):
|
63 |
+
try:
|
64 |
+
response = requests.post(
|
65 |
+
model_url,
|
66 |
+
headers=headers,
|
67 |
+
json=payload,
|
68 |
+
timeout=120 # 2-minute timeout
|
69 |
+
)
|
70 |
+
|
71 |
+
# Check for specific error conditions
|
72 |
+
if response.status_code == 503:
|
73 |
+
# Model might be loading, wait and retry
|
74 |
+
print(f"Service unavailable, retrying in {5 * (attempt + 1)} seconds...")
|
75 |
+
time.sleep(5 * (attempt + 1))
|
76 |
+
continue
|
77 |
+
|
78 |
+
response.raise_for_status() # Raise exception for bad status codes
|
79 |
+
|
80 |
+
return response.content
|
81 |
+
|
82 |
+
except requests.exceptions.RequestException as e:
|
83 |
+
print(f"Request error (Attempt {attempt + 1}/{max_retries}): {e}")
|
84 |
+
|
85 |
+
if attempt == max_retries - 1:
|
86 |
+
raise RuntimeError(f"Failed to generate image after {max_retries} attempts: {e}")
|
87 |
+
|
88 |
+
# Wait before retrying
|
89 |
+
time.sleep(5 * (attempt + 1))
|
90 |
+
|
91 |
+
raise RuntimeError("Unexpected error in image generation")
|