# import pickle import gradio as gr import numpy as np import xgboost as xgb model1=xgb.XGBRegressor() model2=xgb.XGBRegressor() model1.load_model('model1.json') model2.load_model('model2.json') title = "SHIPMENT PRICING PREDICTION(PREDICT PACK PRICE AND UNIT PRICE" def greed(Measure,Line_Item_Quantity,Line_Item_Value,Weight,Freight_Cost,Line_Item_Insurance): input_array=np.array([[Measure,Line_Item_Quantity,Line_Item_Value,Weight,Freight_Cost,Line_Item_Insurance]]) pred1=model1.predict(input_array) pred2=model2.predict(input_array) pred1=float(np.asarray(pred1)) pred2=float(np.asarray(pred2)) return pred1,pred2 output1=gr.outputs.Textbox(label='pack price') output2=gr.outputs.Textbox(label='unit price') demo = gr.Interface( fn=greed, inputs=[gr.inputs.Number(),gr.inputs.Number(),gr.inputs.Number(),gr.inputs.Number(),gr.inputs.Number(),gr.inputs.Number()], outputs=[output1,output2],description='SHIPMENT PRICING PREDCITION') demo.launch(share=True)