Spaces:
Sleeping
Sleeping
File size: 11,173 Bytes
1f70e3d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 |
# Import required packages
import pandas as pd
import numpy as np
import altair as alt
import streamlit as st
import matplotlib.pyplot as plt
from scipy.stats import zscore
import streamlit as st
import altair as alt
from sklearn.cluster import KMeans
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics.pairwise import cosine_similarity
df_new= pd.read_csv('Final_data.csv')
# Page title
st.title("Exploratory Data Analysis on Kiva Loans")
st.sidebar.header("Filters")
# Filter for Country
country = df_new['country'].unique()
selected_country = st.sidebar.selectbox("Select Country", country.tolist())
if selected_country:
filtered_df = df_new[df_new['country'] == selected_country]
else:
st.warning("Please select a country from the sidebar")
st.stop()
# Filter for Gender
borrower_genders = df_new['borrower_genders'].unique()
selected_genders = st.sidebar.multiselect("Select Gender", borrower_genders.tolist(), default=borrower_genders.tolist())
filtered_df = filtered_df[filtered_df['borrower_genders'].isin(selected_genders)]
# Filter for Loan Amount
min_loan, max_loan = float(df_new['loan_amount'].min()), float(df_new['loan_amount'].max())
selected_loan_amount = st.sidebar.slider("Select Loan Amount", min_value=min_loan, max_value=max_loan, value=(min_loan, max_loan))
filtered_df = filtered_df[(filtered_df['loan_amount'] >= selected_loan_amount[0]) & (filtered_df['loan_amount'] <= selected_loan_amount[1])]
# Filter for Years
filtered_df['year'] = pd.to_datetime(filtered_df['date']).dt.year
years = sorted(filtered_df['year'].unique())
selected_years = st.sidebar.multiselect("Select Year(s)", years, default=years)
filtered_df = filtered_df[filtered_df['year'].isin(selected_years)]
# selected filters
st.caption(f"Data for Country: {selected_country} | Gender: {', '.join(selected_genders)} | Loan Amount: {selected_loan_amount} | Years: {', '.join(map(str, selected_years))}")
# Distribution of Loan Sector
st.subheader('Distribution of Loan Sector')
sector_chart = alt.Chart(filtered_df).mark_bar().encode(
x=alt.X('count(sector):Q', title='Count'),
y=alt.Y('sector:N', sort='-x', title='Sector'),
color=alt.Color('sector:N', legend=None)
).properties(
width=600,
height=400
)
st.altair_chart(sector_chart)
# Distribution of Loan Term
st.subheader('Distribution of Loan Term (in Months)')
term_hist = alt.Chart(filtered_df).mark_bar().encode(
x=alt.X('term_in_months:Q', bin=alt.Bin(maxbins=30), title='Term in Months'),
y=alt.Y('count():Q', title='Frequency'),
color=alt.Color('term_in_months:Q', legend=None)
).properties(
width=600,
height=400
)
st.altair_chart(term_hist)
# Monthly Loan Amounts Over Time
st.subheader('Monthly Loan Amounts Over Time')
filtered_df['month'] = pd.to_datetime(filtered_df['date']).dt.month
filtered_df['month_name'] = pd.to_datetime(filtered_df['date']).dt.strftime('%b')
filtered_df['year'] = pd.to_datetime(filtered_df['date']).dt.year
monthly_loan_amount = filtered_df.groupby(['year', 'month_name', 'month'])['loan_amount'].sum().reset_index()
loan_time_series = alt.Chart(monthly_loan_amount).mark_line(point=True).encode(
x=alt.X('month_name:N', sort=['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'], title='Month'),
y=alt.Y('loan_amount:Q', title='Total Loan Amount'),
color=alt.Color('year:N', title='Year'),
tooltip=['year', 'month_name', 'loan_amount']
).properties(
width=700,
height=400
)
st.altair_chart(loan_time_series)
# Top 10 Countries with Highest Average Loan Amount
st.subheader('Top 10 Countries with Highest Average Loan Amount')
df_clean = df_new[df_new['country'].notna() & (df_new['country'].str.strip() != '')]
df_clean['country'] = df_clean['country'].str.strip()
top_10_countries_avg_loan = df_new.groupby('country')['loan_amount'].mean().nlargest(10).reset_index()
top_10_chart = alt.Chart(top_10_countries_avg_loan).mark_bar().encode(
x=alt.X('loan_amount:Q', title='Average Loan Amount'),
y=alt.Y('country:N', sort='-x', title='Country'),
color=alt.Color('country:N', legend=None)
).properties(
width=600,
height=400
)
st.altair_chart(top_10_chart)
# Distribution of Genders
st.subheader('Distribution of Borrower Genders')
gender_counts = filtered_df['borrower_genders'].value_counts().reset_index()
gender_counts.columns = ['borrower_genders', 'count']
gender_doughnut_chart = alt.Chart(gender_counts).mark_arc(innerRadius=80, outerRadius=120).encode(
theta=alt.Theta(field="count", type="quantitative"),
color=alt.Color(field="borrower_genders", type="nominal", title="Borrower Genders"),
tooltip=[alt.Tooltip('borrower_genders:N', title="Gender"), alt.Tooltip('count:Q', title="Count")]
).properties(
width=400,
height=400
)
# text labels to the doughnut chart
gender_doughnut_text = gender_doughnut_chart.mark_text(radius=150, size=15).encode(
text=alt.Text('count:Q', format='.0f')
)
final_chart = alt.layer(gender_doughnut_chart, gender_doughnut_text).configure_legend(
labelFontSize=12,
titleFontSize=14
)
st.altair_chart(final_chart)
# Dataset Summary
st.header('Dataset Summary')
st.caption('Mean Loan Amount: ' + str(round(filtered_df['loan_amount'].mean(), 2)))
st.caption('Median Loan Amount: ' + str(round(filtered_df['loan_amount'].median(), 2)))
st.caption('Mode Loan Amount: ' + str(filtered_df['loan_amount'].mode()[0]))
st.write(filtered_df.describe())
# Filtered dataframe
st.header("Filtered Data")
st.dataframe(filtered_df)
st.header('K-Means Clustering')
#the columns we want to do kmean to
filtered_df_reduced = filtered_df[['loan_amount', 'term_in_months']]
#to determine scaler
fig, ax = plt.subplots(figsize=(10, 5))
filtered_df_reduced.hist(bins=100, ax=ax)
st.pyplot(fig)
#my chosen scaler
scaler = MinMaxScaler()
data_to_cluster_scaled = scaler.fit_transform(filtered_df_reduced)
Sum_of_squared_distances = []
K = range(1, 10)
for k in K:
km = KMeans(n_clusters=k, n_init = "auto")
km.fit(data_to_cluster_scaled)
Sum_of_squared_distances.append(km.inertia_)
fig, ax = plt.subplots()
ax.plot(K, Sum_of_squared_distances, 'bx-')
ax.set_xlabel('Number of Clusters (k)')
ax.set_ylabel('Sum of Squared Distances')
ax.set_title('Elbow Method For Optimal k')
ax.grid(True)
st.pyplot(fig)
def k_means_simple(data, k, max_iters=100):
centroids = data[np.random.choice(data.shape[0], k, replace=False)]
for _ in range(max_iters):
distances = np.linalg.norm(data - centroids[:, np.newaxis], axis=2)
labels = np.argmin(distances, axis=0)
new_centroids = np.array([data[labels == i].mean(axis=0) for i in range(k)])
if np.all(centroids == new_centroids):
break
centroids = new_centroids
return labels, centroids
labels, final_centroids = k_means_simple(data_to_cluster_scaled, 5)
distances = np.linalg.norm(data_to_cluster_scaled[:, np.newaxis] - final_centroids, axis=2)
nearest_centroid_indices = np.argmin(distances, axis=1)
data_df = pd.DataFrame({
'x': data_to_cluster_scaled[:, 0],
'y': data_to_cluster_scaled[:, 1],
'centroid': nearest_centroid_indices
})
centroids_df = pd.DataFrame({
'x': final_centroids[:, 0],
'y': final_centroids[:, 1],
'centroid': range(final_centroids.shape[0])
})
data_df['type'] = 'data'
centroids_df['type'] = 'centroid'
data_df['loan_amount'] = filtered_df['loan_amount'].values
data_df['term_in_months'] = filtered_df['term_in_months'].values
data_df['activity'] = filtered_df['activity'].values
data_df['sector'] = filtered_df['sector'].values
data_df['region'] = filtered_df['region'].values
combined_df = pd.concat([data_df, centroids_df])
scatter_plot = alt.Chart(combined_df).mark_circle(size=60).encode(
x='x',
y='y',
color=alt.Color('centroid:N', scale=alt.Scale(scheme='category10')),
opacity=alt.condition(
alt.datum.type == 'data',
alt.value(0.6),
alt.value(1)
),
tooltip=[
alt.Tooltip('loan_amount:Q', title='Loan Amount'),
alt.Tooltip('term_in_months:Q', title='Term (Months)'),
alt.Tooltip('activity:N', title='Activity'),
alt.Tooltip('sector:N', title='Sector'),
alt.Tooltip('region:N', title='Region')
]
).properties(
title='Reduced Data and Initial Centroids'
)
st.altair_chart(scatter_plot, use_container_width=True)
# Fix session states
if 'country_selected' not in st.session_state:
st.session_state['country_selected'] = None
if 'gender_selected' not in st.session_state:
st.session_state['gender_selected'] = None
if 'sector_selected' not in st.session_state:
st.session_state['sector_selected'] = None
# Recommendation Engine based on Country, Gender, and Sector
st.subheader("Loan Recommendation")
# Input for country
country_input = st.selectbox("Select Country", ["None"] + sorted(list(df_new['country'].unique())))
if country_input != "None":
# Filter gender options based on selected country
filtered_genders = df_new[df_new['country'] == country_input]['borrower_genders'].unique()
gender_input = st.selectbox("Select Gender", ["None"] + list(filtered_genders))
else:
gender_input = st.selectbox("Select Gender", ["None"] + list(df_new['borrower_genders'].unique()))
# Input for sector based on the selected country and gender
if country_input != "None" and gender_input != "None":
# Filter sector options based on selected country and gender
filtered_sectors = df_new[(df_new['country'] == country_input) & (df_new['borrower_genders'] == gender_input)]['sector'].unique()
sector_input = st.selectbox("Select Sector", ["None"] + list(filtered_sectors))
else:
sector_input = st.selectbox("Select Sector", ["None"] + list(df_new['sector'].unique()))
# Generate recommendations based on country, gender, and sector
if country_input != "None" and gender_input != "None" and sector_input != "None":
# Filter the DataFrame based on selected country, gender, and sector
user_filtered_df = df_new[
(df_new['country'] == country_input) &
(df_new['borrower_genders'] == gender_input) &
(df_new['sector'] == sector_input)
].reset_index(drop=True)
if not user_filtered_df.empty:
# Align the filtered DataFrame's indices with the scaled data by resetting both
data_to_cluster_scaled_filtered = data_to_cluster_scaled[:len(user_filtered_df)]
# Compute similarity matrix for filtered data
similarity_matrix = cosine_similarity(data_to_cluster_scaled_filtered)
# Get the most similar loans (top 3)
similar_loans_indices = np.argsort(similarity_matrix[0])[::-1][1:4]
# Display recommended loans
recommendations = user_filtered_df.iloc[similar_loans_indices][['country', 'borrower_genders', 'sector', 'loan_amount', 'term_in_months']]
st.write("Recommended Loans:")
st.dataframe(recommendations)
else:
st.write("No matching loans found for the selected country, gender, and sector.")
else:
st.write("Please select a country, gender, and sector.") |