Spaces:
Sleeping
Sleeping
Commit
Β·
ccd721b
1
Parent(s):
f9d9584
Switch to local GPT-OSS-20B loading with CPU-only approach to avoid CUDA issues
Browse files- app.py +107 -125
- requirements.txt +4 -1
app.py
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
# app.py
|
2 |
# Hugging Face Space: Gradio Docs Chat with GPT-OSS-20B and MCP Integration
|
3 |
# Features:
|
4 |
-
# β’ GPT-OSS-20B with
|
5 |
-
# β’
|
6 |
# β’ MCP tool-calling for Gradio docs access
|
7 |
# β’ Streaming responses with live tool logs
|
8 |
# β’ Optional "Concise / Detailed" answer styles
|
@@ -26,7 +26,6 @@ except ImportError:
|
|
26 |
pass
|
27 |
|
28 |
import gradio as gr
|
29 |
-
import requests
|
30 |
|
31 |
# Try to import MCPClient with fallback
|
32 |
try:
|
@@ -56,13 +55,8 @@ GRADIO_DOCS_MCP_SSE = os.environ.get(
|
|
56 |
"https://gradio-docs-mcp.hf.space/gradio_api/mcp/sse",
|
57 |
)
|
58 |
|
59 |
-
# Model configuration -
|
60 |
-
|
61 |
-
FALLBACK_MODELS = [
|
62 |
-
"microsoft/DialoGPT-medium",
|
63 |
-
"microsoft/DialoGPT-large",
|
64 |
-
"microsoft/DialoGPT-small"
|
65 |
-
]
|
66 |
PROVIDER = os.environ.get("CHAT_PROVIDER", "auto")
|
67 |
HF_TOKEN = os.environ.get("HF_TOKEN") or os.environ.get("HUGGING_FACE_HUB_TOKEN")
|
68 |
|
@@ -81,9 +75,11 @@ DETAILED_SUFFIX = " Provide a detailed, step-by-step answer with short code wher
|
|
81 |
# Model Clients (lazy initialization)
|
82 |
# ----------------------------
|
83 |
mcp_client: Optional[MCPClient] = None
|
|
|
|
|
84 |
_initialized = False
|
85 |
_init_lock = asyncio.Lock()
|
86 |
-
|
87 |
|
88 |
def _current_system_prompt(style: str) -> str:
|
89 |
"""Get the system prompt with style suffix."""
|
@@ -91,8 +87,10 @@ def _current_system_prompt(style: str) -> str:
|
|
91 |
|
92 |
def _reset_clients():
|
93 |
"""Reset all global clients."""
|
94 |
-
global mcp_client, _initialized
|
95 |
mcp_client = None
|
|
|
|
|
96 |
_initialized = False
|
97 |
|
98 |
def get_mcp_client(model_id: str, provider: str, api_key: Optional[str]) -> MCPClient:
|
@@ -104,108 +102,105 @@ def get_mcp_client(model_id: str, provider: str, api_key: Optional[str]) -> MCPC
|
|
104 |
mcp_client = MCPClient(model=model_id, provider=provider, api_key=api_key)
|
105 |
return mcp_client
|
106 |
|
107 |
-
async def
|
108 |
-
"""
|
109 |
-
|
110 |
-
raise ValueError("HF_TOKEN or HUGGING_FACE_HUB_TOKEN required for inference API")
|
111 |
|
112 |
-
#
|
113 |
-
if
|
114 |
-
|
115 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
for msg in messages:
|
117 |
if msg["role"] == "system":
|
118 |
-
|
119 |
"role": "user",
|
120 |
"content": f"Reasoning: high\n\n{msg['content']}"
|
121 |
})
|
122 |
else:
|
123 |
-
|
124 |
-
|
125 |
-
#
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
"max_new_tokens": 512,
|
133 |
-
"temperature": 0.7,
|
134 |
-
"do_sample": True,
|
135 |
-
"return_full_text": False,
|
136 |
-
}
|
137 |
-
}
|
138 |
-
|
139 |
-
headers = {
|
140 |
-
"Authorization": f"Bearer {HF_TOKEN}",
|
141 |
-
"Content-Type": "application/json"
|
142 |
-
}
|
143 |
-
|
144 |
-
# Make the API call
|
145 |
-
try:
|
146 |
-
response = requests.post(
|
147 |
-
f"https://api-inference.huggingface.co/models/{model_id}",
|
148 |
-
headers=headers,
|
149 |
-
json=payload,
|
150 |
-
timeout=120 # 2 minute timeout
|
151 |
)
|
152 |
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
raise Exception("Request timed out after 120 seconds")
|
168 |
-
except requests.exceptions.RequestException as e:
|
169 |
-
raise Exception(f"Request failed: {str(e)}")
|
170 |
-
|
171 |
-
def reset_to_primary_model():
|
172 |
-
"""Reset to use the primary model on next request."""
|
173 |
-
global _current_model
|
174 |
-
_current_model = PRIMARY_MODEL
|
175 |
-
print(f"π Reset to primary model: {PRIMARY_MODEL}")
|
176 |
-
|
177 |
-
async def call_model_with_fallback(messages: List[Dict[str, Any]]) -> Tuple[str, str]:
|
178 |
-
"""Call model with automatic fallback to smaller models."""
|
179 |
-
global _current_model
|
180 |
-
|
181 |
-
# Try current model first (could be primary or a previously successful fallback)
|
182 |
-
try:
|
183 |
-
print(f"π Trying current model: {_current_model}")
|
184 |
-
result = await call_inference_api(messages, _current_model)
|
185 |
-
return result, _current_model
|
186 |
-
except Exception as e:
|
187 |
-
error_msg = str(e)
|
188 |
-
print(f"β {_current_model} failed: {error_msg}")
|
189 |
|
190 |
-
#
|
191 |
-
|
|
|
|
|
|
|
192 |
|
193 |
-
|
194 |
-
if model == _current_model: # Skip the one we just tried
|
195 |
-
continue
|
196 |
-
|
197 |
-
try:
|
198 |
-
print(f"π Trying model: {model}")
|
199 |
-
result = await call_inference_api(messages, model)
|
200 |
-
_current_model = model # Update current model
|
201 |
-
print(f"β
Successfully using model: {model}")
|
202 |
-
return result, model
|
203 |
-
except Exception as model_error:
|
204 |
-
print(f"β {model} failed: {str(model_error)}")
|
205 |
-
continue
|
206 |
|
207 |
-
|
208 |
-
raise Exception(f"
|
209 |
|
210 |
async def ensure_mcp_init(model_id: str, provider: str, api_key: Optional[str]):
|
211 |
"""Initialize MCP server connection."""
|
@@ -288,15 +283,11 @@ async def stream_answer(
|
|
288 |
tool_log: List[str] = []
|
289 |
citations: List[Tuple[str, Optional[str]]] = []
|
290 |
|
291 |
-
# Handle GPT-OSS-20B via
|
292 |
if USE_GPT_OSS:
|
293 |
try:
|
294 |
-
#
|
295 |
-
generated_text
|
296 |
-
|
297 |
-
# Add model info to tool log
|
298 |
-
if used_model != PRIMARY_MODEL:
|
299 |
-
_append_log(tool_log, f"β οΈ Using fallback model: {used_model}")
|
300 |
|
301 |
# Stream character by character
|
302 |
for char in generated_text:
|
@@ -308,7 +299,7 @@ async def stream_answer(
|
|
308 |
|
309 |
except Exception as e:
|
310 |
yield {
|
311 |
-
"delta": f"β
|
312 |
"tool_log": _format_tool_log(tool_log),
|
313 |
"citations": _format_citations(citations),
|
314 |
}
|
@@ -437,7 +428,7 @@ async def stream_answer(
|
|
437 |
with gr.Blocks(fill_height=True) as demo:
|
438 |
gr.Markdown(
|
439 |
"# π€ Gradio Docs Chat\n"
|
440 |
-
"Ask anything about **Gradio**. Powered by GPT-OSS-20B with
|
441 |
)
|
442 |
|
443 |
with gr.Row():
|
@@ -465,12 +456,10 @@ with gr.Blocks(fill_height=True) as demo:
|
|
465 |
value="Detailed",
|
466 |
)
|
467 |
model_info = gr.Markdown(
|
468 |
-
f"**
|
469 |
-
f"**Current Model:** `{_current_model}` \n"
|
470 |
f"**Provider:** `{PROVIDER}` \n"
|
471 |
-
"_(
|
472 |
)
|
473 |
-
reset_model_btn = gr.Button("π Reset to Primary Model", variant="secondary", size="sm")
|
474 |
|
475 |
with gr.Accordion("π Tool Activity (live)", open=True):
|
476 |
tool_log_md = gr.Markdown("_No tool activity yet._")
|
@@ -487,28 +476,21 @@ with gr.Blocks(fill_height=True) as demo:
|
|
487 |
|
488 |
messages_for_llm = to_llm_messages(history_msgs[:-1], user_msg, style_choice)
|
489 |
|
490 |
-
async for chunk in stream_answer(messages_for_llm,
|
491 |
delta = chunk.get("delta", "")
|
492 |
if delta:
|
493 |
history_msgs[-1]["content"] += delta
|
494 |
yield history_msgs, gr.update(value=chunk.get("tool_log", "")), gr.update(value=chunk.get("citations", ""))
|
495 |
|
496 |
-
def on_reset_model():
|
497 |
-
"""Reset to primary model and update UI."""
|
498 |
-
reset_to_primary_model()
|
499 |
-
return gr.update(value=f"**Primary Model:** `{PRIMARY_MODEL}` \n**Current Model:** `{_current_model}` \n**Provider:** `{PROVIDER}` \n_(Auto-fallback to smaller models if primary is paused)_")
|
500 |
-
|
501 |
# Wire up event handlers
|
502 |
msg.submit(on_submit, inputs=[msg, chat, style], outputs=[chat, tool_log_md, citations_md], queue=True)
|
503 |
send_btn.click(on_submit, inputs=[msg, chat, style], outputs=[chat, tool_log_md, citations_md], queue=True)
|
504 |
-
reset_model_btn.click(on_reset_model, outputs=[model_info])
|
505 |
|
506 |
# ----------------------------
|
507 |
# Launch App
|
508 |
# ----------------------------
|
509 |
-
print(f"π Starting Gradio Docs Chat with GPT-OSS-20B
|
510 |
-
print(f"π
|
511 |
-
print(f"π Fallback Models: {', '.join(FALLBACK_MODELS)}")
|
512 |
print(f"π MCP Server: {GRADIO_DOCS_MCP_SSE}")
|
513 |
|
514 |
demo = demo.queue(max_size=32)
|
|
|
1 |
# app.py
|
2 |
# Hugging Face Space: Gradio Docs Chat with GPT-OSS-20B and MCP Integration
|
3 |
# Features:
|
4 |
+
# β’ GPT-OSS-20B with local transformers loading for fast inference
|
5 |
+
# β’ CPU-only loading to avoid CUDA initialization issues
|
6 |
# β’ MCP tool-calling for Gradio docs access
|
7 |
# β’ Streaming responses with live tool logs
|
8 |
# β’ Optional "Concise / Detailed" answer styles
|
|
|
26 |
pass
|
27 |
|
28 |
import gradio as gr
|
|
|
29 |
|
30 |
# Try to import MCPClient with fallback
|
31 |
try:
|
|
|
55 |
"https://gradio-docs-mcp.hf.space/gradio_api/mcp/sse",
|
56 |
)
|
57 |
|
58 |
+
# Model configuration - local GPT-OSS-20B loading
|
59 |
+
MODEL_ID = "openai/gpt-oss-20b"
|
|
|
|
|
|
|
|
|
|
|
60 |
PROVIDER = os.environ.get("CHAT_PROVIDER", "auto")
|
61 |
HF_TOKEN = os.environ.get("HF_TOKEN") or os.environ.get("HUGGING_FACE_HUB_TOKEN")
|
62 |
|
|
|
75 |
# Model Clients (lazy initialization)
|
76 |
# ----------------------------
|
77 |
mcp_client: Optional[MCPClient] = None
|
78 |
+
gpt_oss_tokenizer = None
|
79 |
+
gpt_oss_model = None
|
80 |
_initialized = False
|
81 |
_init_lock = asyncio.Lock()
|
82 |
+
_model_loading_lock = asyncio.Lock()
|
83 |
|
84 |
def _current_system_prompt(style: str) -> str:
|
85 |
"""Get the system prompt with style suffix."""
|
|
|
87 |
|
88 |
def _reset_clients():
|
89 |
"""Reset all global clients."""
|
90 |
+
global mcp_client, gpt_oss_tokenizer, gpt_oss_model, _initialized
|
91 |
mcp_client = None
|
92 |
+
gpt_oss_tokenizer = None
|
93 |
+
gpt_oss_model = None
|
94 |
_initialized = False
|
95 |
|
96 |
def get_mcp_client(model_id: str, provider: str, api_key: Optional[str]) -> MCPClient:
|
|
|
102 |
mcp_client = MCPClient(model=model_id, provider=provider, api_key=api_key)
|
103 |
return mcp_client
|
104 |
|
105 |
+
async def get_gpt_oss_model_and_tokenizer():
|
106 |
+
"""Get or create GPT-OSS-20B model and tokenizer with CPU-only loading."""
|
107 |
+
global gpt_oss_tokenizer, gpt_oss_model
|
|
|
108 |
|
109 |
+
# Check if already loaded
|
110 |
+
if gpt_oss_tokenizer is not None and gpt_oss_model is not None:
|
111 |
+
return gpt_oss_tokenizer, gpt_oss_model
|
112 |
+
|
113 |
+
# Use lock to prevent multiple simultaneous loads
|
114 |
+
async with _model_loading_lock:
|
115 |
+
# Double-check after acquiring lock
|
116 |
+
if gpt_oss_tokenizer is not None and gpt_oss_model is not None:
|
117 |
+
return gpt_oss_tokenizer, gpt_oss_model
|
118 |
+
|
119 |
+
try:
|
120 |
+
# Import here to avoid CUDA initialization in main process
|
121 |
+
import torch
|
122 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
123 |
+
|
124 |
+
print("π Loading GPT-OSS-20B tokenizer...")
|
125 |
+
gpt_oss_tokenizer = AutoTokenizer.from_pretrained(
|
126 |
+
MODEL_ID,
|
127 |
+
trust_remote_code=True,
|
128 |
+
)
|
129 |
+
|
130 |
+
print("π Loading GPT-OSS-20B model (CPU-only)...")
|
131 |
+
# Force CPU-only loading to avoid CUDA initialization issues
|
132 |
+
gpt_oss_model = AutoModelForCausalLM.from_pretrained(
|
133 |
+
MODEL_ID,
|
134 |
+
torch_dtype=torch.float32, # Use float32 for CPU compatibility
|
135 |
+
device_map="cpu", # Force CPU loading
|
136 |
+
trust_remote_code=True,
|
137 |
+
low_cpu_mem_usage=True,
|
138 |
+
)
|
139 |
+
|
140 |
+
# Set model to evaluation mode
|
141 |
+
gpt_oss_model.eval()
|
142 |
+
|
143 |
+
print("β
GPT-OSS-20B loaded successfully on CPU!")
|
144 |
+
return gpt_oss_tokenizer, gpt_oss_model
|
145 |
+
|
146 |
+
except Exception as e:
|
147 |
+
print(f"β Failed to load GPT-OSS-20B: {e}")
|
148 |
+
# Reset globals on error
|
149 |
+
gpt_oss_tokenizer = None
|
150 |
+
gpt_oss_model = None
|
151 |
+
raise e
|
152 |
+
|
153 |
+
async def generate_with_gpt_oss(messages: List[Dict[str, Any]]) -> str:
|
154 |
+
"""Generate response using local GPT-OSS-20B model."""
|
155 |
+
try:
|
156 |
+
# Lazy load model only when needed
|
157 |
+
tokenizer, model = await get_gpt_oss_model_and_tokenizer()
|
158 |
+
|
159 |
+
# Convert messages to GPT-OSS format with reasoning
|
160 |
+
gpt_oss_messages = []
|
161 |
for msg in messages:
|
162 |
if msg["role"] == "system":
|
163 |
+
gpt_oss_messages.append({
|
164 |
"role": "user",
|
165 |
"content": f"Reasoning: high\n\n{msg['content']}"
|
166 |
})
|
167 |
else:
|
168 |
+
gpt_oss_messages.append(msg)
|
169 |
+
|
170 |
+
# Apply chat template and generate
|
171 |
+
inputs = tokenizer.apply_chat_template(
|
172 |
+
gpt_oss_messages,
|
173 |
+
add_generation_prompt=True,
|
174 |
+
tokenize=True,
|
175 |
+
return_dict=True,
|
176 |
+
return_tensors="pt",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
177 |
)
|
178 |
|
179 |
+
# Generate with timeout protection
|
180 |
+
try:
|
181 |
+
import torch
|
182 |
+
with torch.no_grad(): # Disable gradients for inference
|
183 |
+
outputs = model.generate(
|
184 |
+
**inputs,
|
185 |
+
max_new_tokens=512,
|
186 |
+
do_sample=True,
|
187 |
+
temperature=0.7,
|
188 |
+
pad_token_id=tokenizer.eos_token_id,
|
189 |
+
max_time=60.0, # 60 second timeout
|
190 |
+
)
|
191 |
+
except Exception as gen_error:
|
192 |
+
raise Exception(f"Generation Error: {str(gen_error)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
193 |
|
194 |
+
# Decode the generated text
|
195 |
+
generated_text = tokenizer.decode(
|
196 |
+
outputs[0][inputs["input_ids"].shape[-1]:],
|
197 |
+
skip_special_tokens=True
|
198 |
+
)
|
199 |
|
200 |
+
return generated_text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
201 |
|
202 |
+
except Exception as e:
|
203 |
+
raise Exception(f"GPT-OSS-20B Error: {str(e)}")
|
204 |
|
205 |
async def ensure_mcp_init(model_id: str, provider: str, api_key: Optional[str]):
|
206 |
"""Initialize MCP server connection."""
|
|
|
283 |
tool_log: List[str] = []
|
284 |
citations: List[Tuple[str, Optional[str]]] = []
|
285 |
|
286 |
+
# Handle GPT-OSS-20B via local model
|
287 |
if USE_GPT_OSS:
|
288 |
try:
|
289 |
+
# Generate response using local model
|
290 |
+
generated_text = await generate_with_gpt_oss(messages_for_llm)
|
|
|
|
|
|
|
|
|
291 |
|
292 |
# Stream character by character
|
293 |
for char in generated_text:
|
|
|
299 |
|
300 |
except Exception as e:
|
301 |
yield {
|
302 |
+
"delta": f"β {str(e)}",
|
303 |
"tool_log": _format_tool_log(tool_log),
|
304 |
"citations": _format_citations(citations),
|
305 |
}
|
|
|
428 |
with gr.Blocks(fill_height=True) as demo:
|
429 |
gr.Markdown(
|
430 |
"# π€ Gradio Docs Chat\n"
|
431 |
+
"Ask anything about **Gradio**. Powered by GPT-OSS-20B with local transformers loading."
|
432 |
)
|
433 |
|
434 |
with gr.Row():
|
|
|
456 |
value="Detailed",
|
457 |
)
|
458 |
model_info = gr.Markdown(
|
459 |
+
f"**Model:** `{MODEL_ID}` (Local Loading) \n"
|
|
|
460 |
f"**Provider:** `{PROVIDER}` \n"
|
461 |
+
"_(CPU-only loading to avoid CUDA issues)_"
|
462 |
)
|
|
|
463 |
|
464 |
with gr.Accordion("π Tool Activity (live)", open=True):
|
465 |
tool_log_md = gr.Markdown("_No tool activity yet._")
|
|
|
476 |
|
477 |
messages_for_llm = to_llm_messages(history_msgs[:-1], user_msg, style_choice)
|
478 |
|
479 |
+
async for chunk in stream_answer(messages_for_llm, MODEL_ID, PROVIDER, HF_TOKEN):
|
480 |
delta = chunk.get("delta", "")
|
481 |
if delta:
|
482 |
history_msgs[-1]["content"] += delta
|
483 |
yield history_msgs, gr.update(value=chunk.get("tool_log", "")), gr.update(value=chunk.get("citations", ""))
|
484 |
|
|
|
|
|
|
|
|
|
|
|
485 |
# Wire up event handlers
|
486 |
msg.submit(on_submit, inputs=[msg, chat, style], outputs=[chat, tool_log_md, citations_md], queue=True)
|
487 |
send_btn.click(on_submit, inputs=[msg, chat, style], outputs=[chat, tool_log_md, citations_md], queue=True)
|
|
|
488 |
|
489 |
# ----------------------------
|
490 |
# Launch App
|
491 |
# ----------------------------
|
492 |
+
print(f"π Starting Gradio Docs Chat with GPT-OSS-20B (Local Loading)")
|
493 |
+
print(f"π Model: {MODEL_ID}")
|
|
|
494 |
print(f"π MCP Server: {GRADIO_DOCS_MCP_SSE}")
|
495 |
|
496 |
demo = demo.queue(max_size=32)
|
requirements.txt
CHANGED
@@ -1,4 +1,7 @@
|
|
1 |
gradio>=5.0.0
|
2 |
huggingface_hub>=0.34.0
|
3 |
python-dotenv>=1.0.1
|
4 |
-
|
|
|
|
|
|
|
|
1 |
gradio>=5.0.0
|
2 |
huggingface_hub>=0.34.0
|
3 |
python-dotenv>=1.0.1
|
4 |
+
transformers>=4.40.0
|
5 |
+
torch>=2.0.0
|
6 |
+
accelerate>=0.20.0
|
7 |
+
safetensors>=0.4.0
|