import gradio as gr import tensorflow as tf import numpy as np from huggingface_hub import from_pretrained_keras MODEL = from_pretrained_keras("subhranil2699/shape_classifier_tf") CLASS_NAMES = ['circle', 'rectangle'] def classify_predict(inp): image = inp image_batch = np.expand_dims(image, 0) predictions = MODEL.predict(image_batch) values, indices = tf.math.top_k(predictions, 2) predicted_values = values.numpy().tolist()[0] indcs = indices.numpy().tolist()[0] confidences = {CLASS_NAMES[i]: round(v, 4) for i, v in zip(indcs, predicted_values)} print(confidences) return confidences interface = gr.Interface( fn=classify_predict, inputs=gr.inputs.Image(shape=(64, 64)), outputs="label", examples=["28.jpg", "57.jpg"] ) interface.launch()