Spaces:
Running
on
Zero
Running
on
Zero
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import threading
|
| 2 |
+
import torch
|
| 3 |
+
from transformers import (
|
| 4 |
+
AutoModelForCausalLM,
|
| 5 |
+
AutoTokenizer,
|
| 6 |
+
TextIteratorStreamer,
|
| 7 |
+
)
|
| 8 |
+
import gradio as gr
|
| 9 |
+
|
| 10 |
+
# Load model and tokenizer
|
| 11 |
+
model_id = "microsoft/bitnet-b1.58-2B-4T"
|
| 12 |
+
|
| 13 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 14 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 15 |
+
model_id,
|
| 16 |
+
torch_dtype=torch.bfloat16,
|
| 17 |
+
device_map="auto"
|
| 18 |
+
)
|
| 19 |
+
|
| 20 |
+
def respond(
|
| 21 |
+
message: str,
|
| 22 |
+
history: list[tuple[str, str]],
|
| 23 |
+
system_message: str,
|
| 24 |
+
max_tokens: int,
|
| 25 |
+
temperature: float,
|
| 26 |
+
top_p: float,
|
| 27 |
+
):
|
| 28 |
+
"""
|
| 29 |
+
Generate a chat response using streaming with TextIteratorStreamer.
|
| 30 |
+
|
| 31 |
+
Args:
|
| 32 |
+
message: User's current message.
|
| 33 |
+
history: List of (user, assistant) tuples from previous turns.
|
| 34 |
+
system_message: Initial system prompt guiding the assistant.
|
| 35 |
+
max_tokens: Maximum number of tokens to generate.
|
| 36 |
+
temperature: Sampling temperature.
|
| 37 |
+
top_p: Nucleus sampling probability.
|
| 38 |
+
|
| 39 |
+
Yields:
|
| 40 |
+
The growing response text as new tokens are generated.
|
| 41 |
+
"""
|
| 42 |
+
# Assemble messages
|
| 43 |
+
messages = [{"role": "system", "content": system_message}]
|
| 44 |
+
for user_msg, bot_msg in history:
|
| 45 |
+
if user_msg:
|
| 46 |
+
messages.append({"role": "user", "content": user_msg})
|
| 47 |
+
if bot_msg:
|
| 48 |
+
messages.append({"role": "assistant", "content": bot_msg})
|
| 49 |
+
messages.append({"role": "user", "content": message})
|
| 50 |
+
|
| 51 |
+
# Prepare prompt and tokenize
|
| 52 |
+
prompt = tokenizer.apply_chat_template(
|
| 53 |
+
messages, tokenize=False, add_generation_prompt=True
|
| 54 |
+
)
|
| 55 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
| 56 |
+
|
| 57 |
+
# Set up streamer for real-time output
|
| 58 |
+
streamer = TextIteratorStreamer(
|
| 59 |
+
tokenizer, skip_prompt=True, skip_special_tokens=True
|
| 60 |
+
)
|
| 61 |
+
generate_kwargs = dict(
|
| 62 |
+
**inputs,
|
| 63 |
+
streamer=streamer,
|
| 64 |
+
max_new_tokens=max_tokens,
|
| 65 |
+
temperature=temperature,
|
| 66 |
+
top_p=top_p,
|
| 67 |
+
do_sample=True,
|
| 68 |
+
)
|
| 69 |
+
# Start generation in a separate thread
|
| 70 |
+
thread = threading.Thread(target=model.generate, kwargs=generate_kwargs)
|
| 71 |
+
thread.start()
|
| 72 |
+
|
| 73 |
+
# Stream tokens back to user
|
| 74 |
+
response = ""
|
| 75 |
+
for new_text in streamer:
|
| 76 |
+
response += new_text
|
| 77 |
+
yield response
|
| 78 |
+
|
| 79 |
+
# Initialize Gradio chat interface
|
| 80 |
+
|
| 81 |
+
demo = gr.ChatInterface(
|
| 82 |
+
fn=respond,
|
| 83 |
+
title="Bitnet-b1.58-2B-4T Chatbot",
|
| 84 |
+
description="This chat application is powered by Microsoft BitNet-B1 and designed for natural conversations.",
|
| 85 |
+
examples=[
|
| 86 |
+
# Each example: [message, system_message, max_new_tokens, temperature, top_p]
|
| 87 |
+
[
|
| 88 |
+
"Hello! How are you?",
|
| 89 |
+
"You are a helpful AI assistant.",
|
| 90 |
+
512,
|
| 91 |
+
0.7,
|
| 92 |
+
0.95,
|
| 93 |
+
],
|
| 94 |
+
[
|
| 95 |
+
"Can you code a snake game in Python?",
|
| 96 |
+
"You are a helpful AI assistant.",
|
| 97 |
+
512,
|
| 98 |
+
0.7,
|
| 99 |
+
0.95,
|
| 100 |
+
],
|
| 101 |
+
],
|
| 102 |
+
additional_inputs=[
|
| 103 |
+
gr.Textbox(
|
| 104 |
+
value="You are a helpful AI assistant.",
|
| 105 |
+
label="System message"
|
| 106 |
+
),
|
| 107 |
+
gr.Slider(
|
| 108 |
+
minimum=1,
|
| 109 |
+
maximum=2048,
|
| 110 |
+
value=512,
|
| 111 |
+
step=1,
|
| 112 |
+
label="Max new tokens"
|
| 113 |
+
),
|
| 114 |
+
gr.Slider(
|
| 115 |
+
minimum=0.1,
|
| 116 |
+
maximum=4.0,
|
| 117 |
+
value=0.7,
|
| 118 |
+
step=0.1,
|
| 119 |
+
label="Temperature"
|
| 120 |
+
),
|
| 121 |
+
gr.Slider(
|
| 122 |
+
minimum=0.1,
|
| 123 |
+
maximum=1.0,
|
| 124 |
+
value=0.95,
|
| 125 |
+
step=0.05,
|
| 126 |
+
label="Top-p (nucleus sampling)"
|
| 127 |
+
),
|
| 128 |
+
],
|
| 129 |
+
)
|
| 130 |
+
|
| 131 |
+
if __name__ == "__main__":
|
| 132 |
+
demo.launch()
|