Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -15,7 +15,6 @@ from transformers import (
|
|
| 15 |
import gradio as gr
|
| 16 |
import spaces
|
| 17 |
|
| 18 |
-
# Load model and tokenizer
|
| 19 |
model_id = "microsoft/bitnet-b1.58-2B-4T"
|
| 20 |
|
| 21 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
|
@@ -49,7 +48,6 @@ def respond(
|
|
| 49 |
Yields:
|
| 50 |
The growing response text as new tokens are generated.
|
| 51 |
"""
|
| 52 |
-
# Assemble messages
|
| 53 |
messages = [{"role": "system", "content": system_message}]
|
| 54 |
for user_msg, bot_msg in history:
|
| 55 |
if user_msg:
|
|
@@ -58,13 +56,11 @@ def respond(
|
|
| 58 |
messages.append({"role": "assistant", "content": bot_msg})
|
| 59 |
messages.append({"role": "user", "content": message})
|
| 60 |
|
| 61 |
-
# Prepare prompt and tokenize
|
| 62 |
prompt = tokenizer.apply_chat_template(
|
| 63 |
messages, tokenize=False, add_generation_prompt=True
|
| 64 |
)
|
| 65 |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
| 66 |
|
| 67 |
-
# Set up streamer for real-time output
|
| 68 |
streamer = TextIteratorStreamer(
|
| 69 |
tokenizer, skip_prompt=True, skip_special_tokens=True
|
| 70 |
)
|
|
@@ -76,24 +72,19 @@ def respond(
|
|
| 76 |
top_p=top_p,
|
| 77 |
do_sample=True,
|
| 78 |
)
|
| 79 |
-
# Start generation in a separate thread
|
| 80 |
thread = threading.Thread(target=model.generate, kwargs=generate_kwargs)
|
| 81 |
thread.start()
|
| 82 |
|
| 83 |
-
# Stream tokens back to user
|
| 84 |
response = ""
|
| 85 |
for new_text in streamer:
|
| 86 |
response += new_text
|
| 87 |
yield response
|
| 88 |
|
| 89 |
-
# Initialize Gradio chat interface
|
| 90 |
-
|
| 91 |
demo = gr.ChatInterface(
|
| 92 |
fn=respond,
|
| 93 |
title="Bitnet-b1.58-2B-4T Chatbot",
|
| 94 |
-
description="This chat application is powered by Microsoft BitNet-b1.58-2B-4T and designed for natural and fast conversations.",
|
| 95 |
examples=[
|
| 96 |
-
# Each example: [message, system_message, max_new_tokens, temperature, top_p]
|
| 97 |
[
|
| 98 |
"Hello! How are you?",
|
| 99 |
"You are a helpful AI assistant.",
|
|
@@ -104,7 +95,7 @@ demo = gr.ChatInterface(
|
|
| 104 |
[
|
| 105 |
"Can you code a snake game in Python?",
|
| 106 |
"You are a helpful AI assistant.",
|
| 107 |
-
|
| 108 |
0.7,
|
| 109 |
0.95,
|
| 110 |
],
|
|
|
|
| 15 |
import gradio as gr
|
| 16 |
import spaces
|
| 17 |
|
|
|
|
| 18 |
model_id = "microsoft/bitnet-b1.58-2B-4T"
|
| 19 |
|
| 20 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
|
|
|
| 48 |
Yields:
|
| 49 |
The growing response text as new tokens are generated.
|
| 50 |
"""
|
|
|
|
| 51 |
messages = [{"role": "system", "content": system_message}]
|
| 52 |
for user_msg, bot_msg in history:
|
| 53 |
if user_msg:
|
|
|
|
| 56 |
messages.append({"role": "assistant", "content": bot_msg})
|
| 57 |
messages.append({"role": "user", "content": message})
|
| 58 |
|
|
|
|
| 59 |
prompt = tokenizer.apply_chat_template(
|
| 60 |
messages, tokenize=False, add_generation_prompt=True
|
| 61 |
)
|
| 62 |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
| 63 |
|
|
|
|
| 64 |
streamer = TextIteratorStreamer(
|
| 65 |
tokenizer, skip_prompt=True, skip_special_tokens=True
|
| 66 |
)
|
|
|
|
| 72 |
top_p=top_p,
|
| 73 |
do_sample=True,
|
| 74 |
)
|
|
|
|
| 75 |
thread = threading.Thread(target=model.generate, kwargs=generate_kwargs)
|
| 76 |
thread.start()
|
| 77 |
|
|
|
|
| 78 |
response = ""
|
| 79 |
for new_text in streamer:
|
| 80 |
response += new_text
|
| 81 |
yield response
|
| 82 |
|
|
|
|
|
|
|
| 83 |
demo = gr.ChatInterface(
|
| 84 |
fn=respond,
|
| 85 |
title="Bitnet-b1.58-2B-4T Chatbot",
|
| 86 |
+
description="This chat application is powered by Microsoft's SOTA BitNet-b1.58-2B-4T and designed for natural and fast conversations.",
|
| 87 |
examples=[
|
|
|
|
| 88 |
[
|
| 89 |
"Hello! How are you?",
|
| 90 |
"You are a helpful AI assistant.",
|
|
|
|
| 95 |
[
|
| 96 |
"Can you code a snake game in Python?",
|
| 97 |
"You are a helpful AI assistant.",
|
| 98 |
+
2048,
|
| 99 |
0.7,
|
| 100 |
0.95,
|
| 101 |
],
|