Spaces:
Running
on
Zero
Running
on
Zero
import os | |
os.system("pip install git+https://github.com/shumingma/transformers.git") | |
import threading | |
import torch | |
import torch._dynamo | |
torch._dynamo.config.suppress_errors = True | |
from transformers import ( | |
AutoModelForCausalLM, | |
AutoTokenizer, | |
TextIteratorStreamer, | |
) | |
import gradio as gr | |
import spaces | |
model_id = "microsoft/bitnet-b1.58-2B-4T" | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_id, | |
torch_dtype=torch.bfloat16, | |
device_map="auto" | |
) | |
print(model.device) | |
def respond( | |
message: str, | |
history: list[tuple[str, str]], | |
system_message: str, | |
max_tokens: int, | |
temperature: float, | |
top_p: float, | |
): | |
""" | |
Generate a chat response using streaming with TextIteratorStreamer. | |
Args: | |
message: User's current message. | |
history: List of (user, assistant) tuples from previous turns. | |
system_message: Initial system prompt guiding the assistant. | |
max_tokens: Maximum number of tokens to generate. | |
temperature: Sampling temperature. | |
top_p: Nucleus sampling probability. | |
Yields: | |
The growing response text as new tokens are generated. | |
""" | |
messages = [{"role": "system", "content": system_message}] | |
for user_msg, bot_msg in history: | |
if user_msg: | |
messages.append({"role": "user", "content": user_msg}) | |
if bot_msg: | |
messages.append({"role": "assistant", "content": bot_msg}) | |
messages.append({"role": "user", "content": message}) | |
prompt = tokenizer.apply_chat_template( | |
messages, tokenize=False, add_generation_prompt=True | |
) | |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device) | |
streamer = TextIteratorStreamer( | |
tokenizer, skip_prompt=True, skip_special_tokens=True | |
) | |
generate_kwargs = dict( | |
**inputs, | |
streamer=streamer, | |
max_new_tokens=max_tokens, | |
temperature=temperature, | |
top_p=top_p, | |
do_sample=True, | |
) | |
thread = threading.Thread(target=model.generate, kwargs=generate_kwargs) | |
thread.start() | |
response = "" | |
for new_text in streamer: | |
response += new_text | |
yield response | |
demo = gr.ChatInterface( | |
fn=respond, | |
title="Bitnet-b1.58-2B-4T Chatbot", | |
description="This chat application is powered by Microsoft's SOTA Bitnet-b1.58-2B-4T and designed for natural and fast conversations.", | |
examples=[ | |
[ | |
"Hello! How are you?", | |
"You are a helpful AI assistant.", | |
512, | |
0.7, | |
0.95, | |
], | |
[ | |
"Can you code a snake game in Python?", | |
"You are a helpful AI assistant.", | |
2048, | |
0.7, | |
0.95, | |
], | |
], | |
additional_inputs=[ | |
gr.Textbox( | |
value="You are a helpful AI assistant.", | |
label="System message" | |
), | |
gr.Slider( | |
minimum=1, | |
maximum=8192, | |
value=2048, | |
step=1, | |
label="Max new tokens" | |
), | |
gr.Slider( | |
minimum=0.1, | |
maximum=4.0, | |
value=0.7, | |
step=0.1, | |
label="Temperature" | |
), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)" | |
), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() |