storresbusquets commited on
Commit
da14581
·
1 Parent(s): dc20cd0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -2
app.py CHANGED
@@ -2,6 +2,8 @@ import gradio as gr
2
  import whisper
3
  from pytube import YouTube
4
  from transformers import pipeline, T5Tokenizer, T5ForConditionalGeneration, AutoTokenizer, AutoModelForSeq2SeqLM
 
 
5
 
6
  class GradioInference():
7
  def __init__(self):
@@ -75,8 +77,9 @@ class GradioInference():
75
  keywords = [x.strip() for x in predicted.split(',') if x.strip()]
76
 
77
  label = self.classifier(results["text"])[0]["label"]
 
78
 
79
- return results["text"], transcription_summary[0]["summary_text"], keywords, label
80
 
81
 
82
  gio = GradioInference()
@@ -112,10 +115,13 @@ with block as demo:
112
  summary = gr.Textbox(label="Summary", placeholder="Summary Output...", lines=5).style(show_copy_button=True, container=True)
113
  keywords = gr.Textbox(label="Keywords", placeholder="Keywords Output...", lines=5).style(show_copy_button=True, container=True)
114
  label = gr.Label(label="Sentiment Analysis")
 
 
 
115
  with gr.Row().style(equal_height=True):
116
  clear = gr.ClearButton([link, title, img, text, summary, keywords, label], scale=1)
117
  btn = gr.Button("Get video insights", variant='primary', scale=1)
118
- btn.click(gio, inputs=[link, lang, size], outputs=[text, summary, keywords, label])
119
  link.change(gio.populate_metadata, inputs=[link], outputs=[img, title])
120
 
121
  with gr.Tab("From Audio file"):
 
2
  import whisper
3
  from pytube import YouTube
4
  from transformers import pipeline, T5Tokenizer, T5ForConditionalGeneration, AutoTokenizer, AutoModelForSeq2SeqLM
5
+ from wordcloud import WordCloud
6
+ import matplotlib.pyplot as plt
7
 
8
  class GradioInference():
9
  def __init__(self):
 
77
  keywords = [x.strip() for x in predicted.split(',') if x.strip()]
78
 
79
  label = self.classifier(results["text"])[0]["label"]
80
+ wordcloud = WordCloud(width=800, height=400, background_color='white').generate(results["text"])
81
 
82
+ return results["text"], transcription_summary[0]["summary_text"], keywords, label, wordcloud
83
 
84
 
85
  gio = GradioInference()
 
115
  summary = gr.Textbox(label="Summary", placeholder="Summary Output...", lines=5).style(show_copy_button=True, container=True)
116
  keywords = gr.Textbox(label="Keywords", placeholder="Keywords Output...", lines=5).style(show_copy_button=True, container=True)
117
  label = gr.Label(label="Sentiment Analysis")
118
+ with gr.Row().style(equal_height=True):
119
+ # Display the Word Cloud
120
+ wordcloud = gr.Image()
121
  with gr.Row().style(equal_height=True):
122
  clear = gr.ClearButton([link, title, img, text, summary, keywords, label], scale=1)
123
  btn = gr.Button("Get video insights", variant='primary', scale=1)
124
+ btn.click(gio, inputs=[link, lang, size], outputs=[text, summary, keywords, label, wordcloud])
125
  link.change(gio.populate_metadata, inputs=[link], outputs=[img, title])
126
 
127
  with gr.Tab("From Audio file"):