peft-methods / app.py
stevhliu's picture
stevhliu HF staff
Create app.py
363fa3b
raw
history blame
868 Bytes
import gradio as gr
import pandas as pd
df = pd.read_csv("https://huggingface.co/datasets/stevhliu/supported-peft-models-methods/raw/main/pefty.csv")
def get_model_and_peft_method(task):
"""
Returns the model and PEFT methods that match a given task.
"""
return df[df['task'] == task].drop('task', axis=1)
demo = gr.Interface(
get_model_and_peft_method,
inputs=gr.Dropdown(["causal language modeling", "conditional generation", "sequence classification", "token classification", "text-to-image", "image classification", "image-to-text", "semantic segmentation"], label="task"),
outputs=gr.Dataframe(headers=["model", "peft method"], label="supported models and PEFT methods"),
title="Supported models and PEFT methods",
description="Discover what models and PEFT methods are supported for a given task"
)
demo.launch(debug=True)