Spaces:
Runtime error
Runtime error
| import streamlit as st | |
| from pyvis.network import Network | |
| import plotly.express as px | |
| from sklearn.metrics.pairwise import cosine_similarity | |
| from sentence_transformers import SentenceTransformer | |
| from bertopic import BERTopic | |
| from sklearn.feature_extraction.text import CountVectorizer | |
| import pandas as pd | |
| import numpy as np | |
| import networkx as nx | |
| def reset_default_topic_sliders(min_topic_size, n_gram_range): | |
| st.session_state['min_topic_size'] = min_topic_size | |
| st.session_state['n_gram_range'] = n_gram_range | |
| def reset_default_threshold_slider(threshold): | |
| st.session_state['threshold'] = threshold | |
| def load_sbert_model(): | |
| return SentenceTransformer('allenai-specter') | |
| def load_data(uploaded_file): | |
| data = pd.read_csv(uploaded_file) | |
| data = data[['Title', 'Abstract']] | |
| data = data.dropna() | |
| data = data.reset_index(drop=True) | |
| return data | |
| def topic_modeling(data, min_topic_size, n_gram_range): | |
| """Topic modeling using BERTopic | |
| """ | |
| topic_model = BERTopic( | |
| embedding_model=load_sbert_model(), | |
| vectorizer_model=CountVectorizer( | |
| stop_words='english', ngram_range=n_gram_range), | |
| min_topic_size=min_topic_size | |
| ) | |
| # For 'allenai-specter' | |
| data['Title + Abstract'] = data['Title'] + '[SEP]' + data['Abstract'] | |
| # Train the topic model | |
| data["Topic"], data["Probs"] = topic_model.fit_transform( | |
| data['Title + Abstract']) | |
| # Merge topic results | |
| topic_df = topic_model.get_topic_info()[['Topic', 'Name']] | |
| data = data.merge(topic_df, on='Topic', how='left') | |
| # Topics | |
| topics = topic_df.set_index('Topic').to_dict(orient='index') | |
| return data, topic_model, topics | |
| def embeddings(data): | |
| data['embedding'] = load_sbert_model().encode( | |
| data['Title + Abstract']).tolist() | |
| return data | |
| def cosine_sim(data): | |
| cosine_sim_matrix = cosine_similarity(data['embedding'].values.tolist()) | |
| # Take only upper triangular matrix | |
| cosine_sim_matrix = np.triu(cosine_sim_matrix, k=1) | |
| return cosine_sim_matrix | |
| def calc_max_connections(num_papers, ratio): | |
| n = ratio*num_papers | |
| return n*(n-1)/2 | |
| def calc_optimal_threshold(cosine_sim_matrix, max_connections): | |
| """Calculates the optimal threshold for the cosine similarity matrix. | |
| Allows a max of max_connections | |
| """ | |
| thresh_sweep = np.arange(0.05, 1.05, 0.05) | |
| for idx, threshold in enumerate(thresh_sweep): | |
| neighbors = np.argwhere(cosine_sim_matrix >= threshold).tolist() | |
| if len(neighbors) < max_connections: | |
| break | |
| return round(thresh_sweep[idx-1], 2).item(), round(thresh_sweep[idx], 2).item() | |
| def calc_neighbors(cosine_sim_matrix, threshold): | |
| neighbors = np.argwhere(cosine_sim_matrix >= threshold).tolist() | |
| return neighbors, len(neighbors) | |
| def nx_hash_func(nx_net): | |
| """Hash function for NetworkX graphs. | |
| """ | |
| return (list(nx_net.nodes()), list(nx_net.edges())) | |
| def pyvis_hash_func(pyvis_net): | |
| """Hash function for pyvis graphs. | |
| """ | |
| return (pyvis_net.nodes, pyvis_net.edges) | |
| def network_plot(data, topics, neighbors): | |
| """Creates a network plot of connected papers. Colored by Topic Model topics. | |
| """ | |
| nx_net = nx.Graph() | |
| pyvis_net = Network(height='750px', width='100%', bgcolor='#222222') | |
| # Add Nodes | |
| nodes = [ | |
| ( | |
| row.Index, | |
| { | |
| 'group': row.Topic, | |
| 'label': row.Index, | |
| 'title': row.Title, | |
| 'size': 20, 'font': {'size': 20, 'color': 'white'} | |
| } | |
| ) | |
| for row in data.itertuples() | |
| ] | |
| nx_net.add_nodes_from(nodes) | |
| assert(nx_net.number_of_nodes() == len(data)) | |
| # Add Legend Nodes | |
| step = 150 | |
| x = -2000 | |
| y = -500 | |
| legend_nodes = [ | |
| ( | |
| len(data)+idx, | |
| { | |
| 'group': key, 'label': ', '.join(value['Name'].split('_')[1:]), | |
| 'size': 30, 'physics': False, 'x': x, 'y': f'{y + idx*step}px', | |
| # , 'fixed': True, | |
| 'shape': 'box', 'widthConstraint': 1000, 'font': {'size': 40, 'color': 'black'} | |
| } | |
| ) | |
| for idx, (key, value) in enumerate(topics.items()) | |
| ] | |
| nx_net.add_nodes_from(legend_nodes) | |
| # Add Edges | |
| nx_net.add_edges_from(neighbors) | |
| assert(nx_net.number_of_edges() == len(neighbors)) | |
| # Plot the Pyvis graph | |
| pyvis_net.from_nx(nx_net) | |
| return nx_net, pyvis_net | |
| def network_centrality(data, centrality, centrality_option): | |
| """Calculates the centrality of the network | |
| """ | |
| # Sort Top 10 Central nodes | |
| central_nodes = sorted( | |
| centrality.items(), key=lambda item: item[1], reverse=True) | |
| central_nodes = pd.DataFrame(central_nodes, columns=[ | |
| 'node', centrality_option]).set_index('node') | |
| joined_data = data.join(central_nodes) | |
| top_central_nodes = joined_data.sort_values( | |
| centrality_option, ascending=False).head(10) | |
| # Plot the Top 10 Central nodes | |
| fig = px.bar(top_central_nodes, x=centrality_option, y='Title') | |
| fig.update_layout(yaxis={'categoryorder': 'total ascending'}, | |
| font={'size': 15}, | |
| height=800, width=800) | |
| return fig | |