AK1239 commited on
Commit
efd1fd4
·
1 Parent(s): 253c2af

removed some comments

Browse files
Files changed (1) hide show
  1. app/main.py +6 -6
app/main.py CHANGED
@@ -42,9 +42,9 @@ class PromptRequest(BaseModel):
42
 
43
  class ContentRequest(BaseModel):
44
  grade: int
45
- subject: str # "math" or "science"
46
  topic: str
47
- style: str = "normal" # "normal", "simple", or "creative"
48
 
49
  TOPIC_KEYWORDS = {
50
  # Grade 3 Science
@@ -208,13 +208,13 @@ def retrieve_documents(query, index, embedding_model, documents, top_k=5):
208
 
209
  # Simple direct keyword matching since we only have one keyword per topic
210
  for filename, keywords in TOPIC_KEYWORDS.items():
211
- if keywords[0] == query_lower: # Exact match with the single keyword
212
  target_topic = filename
213
  break
214
 
215
  # Get embeddings and search
216
  query_embedding = embedding_model.encode([query])
217
- distances, indices = index.search(query_embedding, top_k * 3) # Get more candidates
218
 
219
  # Filter and organize retrieved documents
220
  topic_docs = []
@@ -393,7 +393,7 @@ async def load_or_create_index():
393
  files_found = True
394
  chunks = split_text_into_chunks(text, filename)
395
  documents.extend(chunks)
396
- await asyncio.sleep(0) # Allow other async operations to proceed
397
 
398
  if not files_found:
399
  raise Exception(f"No valid text or PDF files found in the specified paths")
@@ -497,7 +497,7 @@ async def generate_content(request: ContentRequest):
497
  }
498
 
499
  response = generate_response_with_rag(
500
- request.topic, # Use topic as the prompt
501
  app.state.faiss_index,
502
  app.state.embedding_model,
503
  app.state.documents,
 
42
 
43
  class ContentRequest(BaseModel):
44
  grade: int
45
+ subject: str
46
  topic: str
47
+ style: str = "normal"
48
 
49
  TOPIC_KEYWORDS = {
50
  # Grade 3 Science
 
208
 
209
  # Simple direct keyword matching since we only have one keyword per topic
210
  for filename, keywords in TOPIC_KEYWORDS.items():
211
+ if keywords[0] == query_lower:
212
  target_topic = filename
213
  break
214
 
215
  # Get embeddings and search
216
  query_embedding = embedding_model.encode([query])
217
+ distances, indices = index.search(query_embedding, top_k * 3)
218
 
219
  # Filter and organize retrieved documents
220
  topic_docs = []
 
393
  files_found = True
394
  chunks = split_text_into_chunks(text, filename)
395
  documents.extend(chunks)
396
+ await asyncio.sleep(0)
397
 
398
  if not files_found:
399
  raise Exception(f"No valid text or PDF files found in the specified paths")
 
497
  }
498
 
499
  response = generate_response_with_rag(
500
+ request.topic,
501
  app.state.faiss_index,
502
  app.state.embedding_model,
503
  app.state.documents,