removed some comments
Browse files- app/main.py +6 -6
    	
        app/main.py
    CHANGED
    
    | @@ -42,9 +42,9 @@ class PromptRequest(BaseModel): | |
| 42 |  | 
| 43 | 
             
            class ContentRequest(BaseModel):
         | 
| 44 | 
             
                grade: int
         | 
| 45 | 
            -
                subject: str | 
| 46 | 
             
                topic: str
         | 
| 47 | 
            -
                style: str = "normal"   | 
| 48 |  | 
| 49 | 
             
            TOPIC_KEYWORDS = {
         | 
| 50 | 
             
                # Grade 3 Science
         | 
| @@ -208,13 +208,13 @@ def retrieve_documents(query, index, embedding_model, documents, top_k=5): | |
| 208 |  | 
| 209 | 
             
                # Simple direct keyword matching since we only have one keyword per topic
         | 
| 210 | 
             
                for filename, keywords in TOPIC_KEYWORDS.items():
         | 
| 211 | 
            -
                    if keywords[0] == query_lower:   | 
| 212 | 
             
                        target_topic = filename
         | 
| 213 | 
             
                        break
         | 
| 214 |  | 
| 215 | 
             
                # Get embeddings and search
         | 
| 216 | 
             
                query_embedding = embedding_model.encode([query])
         | 
| 217 | 
            -
                distances, indices = index.search(query_embedding, top_k * 3)   | 
| 218 |  | 
| 219 | 
             
                # Filter and organize retrieved documents
         | 
| 220 | 
             
                topic_docs = []
         | 
| @@ -393,7 +393,7 @@ async def load_or_create_index(): | |
| 393 | 
             
                            files_found = True
         | 
| 394 | 
             
                            chunks = split_text_into_chunks(text, filename)
         | 
| 395 | 
             
                            documents.extend(chunks)
         | 
| 396 | 
            -
                        await asyncio.sleep(0)   | 
| 397 |  | 
| 398 | 
             
                    if not files_found:
         | 
| 399 | 
             
                        raise Exception(f"No valid text or PDF files found in the specified paths")
         | 
| @@ -497,7 +497,7 @@ async def generate_content(request: ContentRequest): | |
| 497 | 
             
                    }
         | 
| 498 |  | 
| 499 | 
             
                    response = generate_response_with_rag(
         | 
| 500 | 
            -
                        request.topic,   | 
| 501 | 
             
                        app.state.faiss_index,
         | 
| 502 | 
             
                        app.state.embedding_model,
         | 
| 503 | 
             
                        app.state.documents,
         | 
|  | |
| 42 |  | 
| 43 | 
             
            class ContentRequest(BaseModel):
         | 
| 44 | 
             
                grade: int
         | 
| 45 | 
            +
                subject: str
         | 
| 46 | 
             
                topic: str
         | 
| 47 | 
            +
                style: str = "normal"  
         | 
| 48 |  | 
| 49 | 
             
            TOPIC_KEYWORDS = {
         | 
| 50 | 
             
                # Grade 3 Science
         | 
|  | |
| 208 |  | 
| 209 | 
             
                # Simple direct keyword matching since we only have one keyword per topic
         | 
| 210 | 
             
                for filename, keywords in TOPIC_KEYWORDS.items():
         | 
| 211 | 
            +
                    if keywords[0] == query_lower:  
         | 
| 212 | 
             
                        target_topic = filename
         | 
| 213 | 
             
                        break
         | 
| 214 |  | 
| 215 | 
             
                # Get embeddings and search
         | 
| 216 | 
             
                query_embedding = embedding_model.encode([query])
         | 
| 217 | 
            +
                distances, indices = index.search(query_embedding, top_k * 3)  
         | 
| 218 |  | 
| 219 | 
             
                # Filter and organize retrieved documents
         | 
| 220 | 
             
                topic_docs = []
         | 
|  | |
| 393 | 
             
                            files_found = True
         | 
| 394 | 
             
                            chunks = split_text_into_chunks(text, filename)
         | 
| 395 | 
             
                            documents.extend(chunks)
         | 
| 396 | 
            +
                        await asyncio.sleep(0)  
         | 
| 397 |  | 
| 398 | 
             
                    if not files_found:
         | 
| 399 | 
             
                        raise Exception(f"No valid text or PDF files found in the specified paths")
         | 
|  | |
| 497 | 
             
                    }
         | 
| 498 |  | 
| 499 | 
             
                    response = generate_response_with_rag(
         | 
| 500 | 
            +
                        request.topic,  
         | 
| 501 | 
             
                        app.state.faiss_index,
         | 
| 502 | 
             
                        app.state.embedding_model,
         | 
| 503 | 
             
                        app.state.documents,
         | 
