hz2475 commited on
Commit
72f684c
·
1 Parent(s): 5559452
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. LICENSE +201 -0
  2. README.md +438 -10
  3. assets/examples/sample-0.png +0 -0
  4. assets/examples/sample-1.png +0 -0
  5. assets/examples/sample-15.png +0 -0
  6. assets/examples/sample-16.png +0 -0
  7. assets/examples/sample-17.png +0 -0
  8. assets/examples/sample-18.png +0 -0
  9. assets/examples/sample-4.png +0 -0
  10. assets/examples/sample-6.png +0 -0
  11. assets/examples/sample-7.png +0 -0
  12. configs/accelerate/1-gpu.yaml +16 -0
  13. configs/accelerate/2-gpu.yaml +16 -0
  14. configs/accelerate/4-gpu.yaml +16 -0
  15. configs/accelerate/8-gpu.yaml +16 -0
  16. configs/accelerate/deepspeed-1-gpu.yaml +21 -0
  17. configs/accelerate/deepspeed-2-gpu.yaml +21 -0
  18. configs/accelerate/deepspeed-4-gpu.yaml +21 -0
  19. configs/accelerate/deepspeed-8-gpu.yaml +21 -0
  20. configs/accelerate/deespeed.json +29 -0
  21. configs/accelerate/val-deepspeed-1-gpu.yaml +21 -0
  22. configs/chat-template.jinja +1 -0
  23. configs/generation/hf/starvector-1b/im2svg.yaml +52 -0
  24. configs/generation/hf/starvector-1b/text2svg.yaml +44 -0
  25. configs/generation/hf/starvector-8b/im2svg.yaml +50 -0
  26. configs/generation/hf/starvector-8b/text2svg.yaml +40 -0
  27. configs/generation/vllm/starvector-1b/im2svg.yaml +51 -0
  28. configs/generation/vllm/starvector-1b/text2svg.yaml +40 -0
  29. configs/generation/vllm/starvector-8b/im2svg.yaml +45 -0
  30. configs/generation/vllm/starvector-8b/text2svg.yaml +41 -0
  31. configs/metrics/im2svg.yaml +12 -0
  32. configs/metrics/text2svg.yaml +12 -0
  33. configs/models/default.yaml +93 -0
  34. configs/models/starvector-1b/im2svg-emoji.yaml +87 -0
  35. configs/models/starvector-1b/im2svg-fonts.yaml +87 -0
  36. configs/models/starvector-1b/im2svg-icons.yaml +87 -0
  37. configs/models/starvector-1b/im2svg-stack.yaml +87 -0
  38. configs/models/starvector-1b/text2svg-figr.yaml +94 -0
  39. configs/models/starvector-1b/text2svg-stack.yaml +96 -0
  40. configs/models/starvector-8b/im2svg-emoji.yaml +94 -0
  41. configs/models/starvector-8b/im2svg-fonts-simple.yaml +94 -0
  42. configs/models/starvector-8b/im2svg-fonts.yaml +94 -0
  43. configs/models/starvector-8b/im2svg-icons.yaml +94 -0
  44. configs/models/starvector-8b/im2svg-stack.yaml +96 -0
  45. configs/models/starvector-8b/text2svg-figr.yaml +96 -0
  46. configs/models/starvector-8b/text2svg-stack.yaml +96 -0
  47. controller.log +31 -0
  48. model_worker_ad9563.log +17 -0
  49. models/modeling_starvector.py +224 -0
  50. models/starvector/adapter.py +15 -0
LICENSE ADDED
@@ -0,0 +1,201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Apache License
2
+ Version 2.0, January 2004
3
+ http://www.apache.org/licenses/
4
+
5
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6
+
7
+ 1. Definitions.
8
+
9
+ "License" shall mean the terms and conditions for use, reproduction,
10
+ and distribution as defined by Sections 1 through 9 of this document.
11
+
12
+ "Licensor" shall mean the copyright owner or entity authorized by
13
+ the copyright owner that is granting the License.
14
+
15
+ "Legal Entity" shall mean the union of the acting entity and all
16
+ other entities that control, are controlled by, or are under common
17
+ control with that entity. For the purposes of this definition,
18
+ "control" means (i) the power, direct or indirect, to cause the
19
+ direction or management of such entity, whether by contract or
20
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
21
+ outstanding shares, or (iii) beneficial ownership of such entity.
22
+
23
+ "You" (or "Your") shall mean an individual or Legal Entity
24
+ exercising permissions granted by this License.
25
+
26
+ "Source" form shall mean the preferred form for making modifications,
27
+ including but not limited to software source code, documentation
28
+ source, and configuration files.
29
+
30
+ "Object" form shall mean any form resulting from mechanical
31
+ transformation or translation of a Source form, including but
32
+ not limited to compiled object code, generated documentation,
33
+ and conversions to other media types.
34
+
35
+ "Work" shall mean the work of authorship, whether in Source or
36
+ Object form, made available under the License, as indicated by a
37
+ copyright notice that is included in or attached to the work
38
+ (an example is provided in the Appendix below).
39
+
40
+ "Derivative Works" shall mean any work, whether in Source or Object
41
+ form, that is based on (or derived from) the Work and for which the
42
+ editorial revisions, annotations, elaborations, or other modifications
43
+ represent, as a whole, an original work of authorship. For the purposes
44
+ of this License, Derivative Works shall not include works that remain
45
+ separable from, or merely link (or bind by name) to the interfaces of,
46
+ the Work and Derivative Works thereof.
47
+
48
+ "Contribution" shall mean any work of authorship, including
49
+ the original version of the Work and any modifications or additions
50
+ to that Work or Derivative Works thereof, that is intentionally
51
+ submitted to Licensor for inclusion in the Work by the copyright owner
52
+ or by an individual or Legal Entity authorized to submit on behalf of
53
+ the copyright owner. For the purposes of this definition, "submitted"
54
+ means any form of electronic, verbal, or written communication sent
55
+ to the Licensor or its representatives, including but not limited to
56
+ communication on electronic mailing lists, source code control systems,
57
+ and issue tracking systems that are managed by, or on behalf of, the
58
+ Licensor for the purpose of discussing and improving the Work, but
59
+ excluding communication that is conspicuously marked or otherwise
60
+ designated in writing by the copyright owner as "Not a Contribution."
61
+
62
+ "Contributor" shall mean Licensor and any individual or Legal Entity
63
+ on behalf of whom a Contribution has been received by Licensor and
64
+ subsequently incorporated within the Work.
65
+
66
+ 2. Grant of Copyright License. Subject to the terms and conditions of
67
+ this License, each Contributor hereby grants to You a perpetual,
68
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69
+ copyright license to reproduce, prepare Derivative Works of,
70
+ publicly display, publicly perform, sublicense, and distribute the
71
+ Work and such Derivative Works in Source or Object form.
72
+
73
+ 3. Grant of Patent License. Subject to the terms and conditions of
74
+ this License, each Contributor hereby grants to You a perpetual,
75
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76
+ (except as stated in this section) patent license to make, have made,
77
+ use, offer to sell, sell, import, and otherwise transfer the Work,
78
+ where such license applies only to those patent claims licensable
79
+ by such Contributor that are necessarily infringed by their
80
+ Contribution(s) alone or by combination of their Contribution(s)
81
+ with the Work to which such Contribution(s) was submitted. If You
82
+ institute patent litigation against any entity (including a
83
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
84
+ or a Contribution incorporated within the Work constitutes direct
85
+ or contributory patent infringement, then any patent licenses
86
+ granted to You under this License for that Work shall terminate
87
+ as of the date such litigation is filed.
88
+
89
+ 4. Redistribution. You may reproduce and distribute copies of the
90
+ Work or Derivative Works thereof in any medium, with or without
91
+ modifications, and in Source or Object form, provided that You
92
+ meet the following conditions:
93
+
94
+ (a) You must give any other recipients of the Work or
95
+ Derivative Works a copy of this License; and
96
+
97
+ (b) You must cause any modified files to carry prominent notices
98
+ stating that You changed the files; and
99
+
100
+ (c) You must retain, in the Source form of any Derivative Works
101
+ that You distribute, all copyright, patent, trademark, and
102
+ attribution notices from the Source form of the Work,
103
+ excluding those notices that do not pertain to any part of
104
+ the Derivative Works; and
105
+
106
+ (d) If the Work includes a "NOTICE" text file as part of its
107
+ distribution, then any Derivative Works that You distribute must
108
+ include a readable copy of the attribution notices contained
109
+ within such NOTICE file, excluding those notices that do not
110
+ pertain to any part of the Derivative Works, in at least one
111
+ of the following places: within a NOTICE text file distributed
112
+ as part of the Derivative Works; within the Source form or
113
+ documentation, if provided along with the Derivative Works; or,
114
+ within a display generated by the Derivative Works, if and
115
+ wherever such third-party notices normally appear. The contents
116
+ of the NOTICE file are for informational purposes only and
117
+ do not modify the License. You may add Your own attribution
118
+ notices within Derivative Works that You distribute, alongside
119
+ or as an addendum to the NOTICE text from the Work, provided
120
+ that such additional attribution notices cannot be construed
121
+ as modifying the License.
122
+
123
+ You may add Your own copyright statement to Your modifications and
124
+ may provide additional or different license terms and conditions
125
+ for use, reproduction, or distribution of Your modifications, or
126
+ for any such Derivative Works as a whole, provided Your use,
127
+ reproduction, and distribution of the Work otherwise complies with
128
+ the conditions stated in this License.
129
+
130
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
131
+ any Contribution intentionally submitted for inclusion in the Work
132
+ by You to the Licensor shall be under the terms and conditions of
133
+ this License, without any additional terms or conditions.
134
+ Notwithstanding the above, nothing herein shall supersede or modify
135
+ the terms of any separate license agreement you may have executed
136
+ with Licensor regarding such Contributions.
137
+
138
+ 6. Trademarks. This License does not grant permission to use the trade
139
+ names, trademarks, service marks, or product names of the Licensor,
140
+ except as required for reasonable and customary use in describing the
141
+ origin of the Work and reproducing the content of the NOTICE file.
142
+
143
+ 7. Disclaimer of Warranty. Unless required by applicable law or
144
+ agreed to in writing, Licensor provides the Work (and each
145
+ Contributor provides its Contributions) on an "AS IS" BASIS,
146
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147
+ implied, including, without limitation, any warranties or conditions
148
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149
+ PARTICULAR PURPOSE. You are solely responsible for determining the
150
+ appropriateness of using or redistributing the Work and assume any
151
+ risks associated with Your exercise of permissions under this License.
152
+
153
+ 8. Limitation of Liability. In no event and under no legal theory,
154
+ whether in tort (including negligence), contract, or otherwise,
155
+ unless required by applicable law (such as deliberate and grossly
156
+ negligent acts) or agreed to in writing, shall any Contributor be
157
+ liable to You for damages, including any direct, indirect, special,
158
+ incidental, or consequential damages of any character arising as a
159
+ result of this License or out of the use or inability to use the
160
+ Work (including but not limited to damages for loss of goodwill,
161
+ work stoppage, computer failure or malfunction, or any and all
162
+ other commercial damages or losses), even if such Contributor
163
+ has been advised of the possibility of such damages.
164
+
165
+ 9. Accepting Warranty or Additional Liability. While redistributing
166
+ the Work or Derivative Works thereof, You may choose to offer,
167
+ and charge a fee for, acceptance of support, warranty, indemnity,
168
+ or other liability obligations and/or rights consistent with this
169
+ License. However, in accepting such obligations, You may act only
170
+ on Your own behalf and on Your sole responsibility, not on behalf
171
+ of any other Contributor, and only if You agree to indemnify,
172
+ defend, and hold each Contributor harmless for any liability
173
+ incurred by, or claims asserted against, such Contributor by reason
174
+ of your accepting any such warranty or additional liability.
175
+
176
+ END OF TERMS AND CONDITIONS
177
+
178
+ APPENDIX: How to apply the Apache License to your work.
179
+
180
+ To apply the Apache License to your work, attach the following
181
+ boilerplate notice, with the fields enclosed by brackets "[]"
182
+ replaced with your own identifying information. (Don't include
183
+ the brackets!) The text should be enclosed in the appropriate
184
+ comment syntax for the file format. We also recommend that a
185
+ file or class name and description of purpose be included on the
186
+ same "printed page" as the copyright notice for easier
187
+ identification within third-party archives.
188
+
189
+ Copyright [yyyy] [name of copyright owner]
190
+
191
+ Licensed under the Apache License, Version 2.0 (the "License");
192
+ you may not use this file except in compliance with the License.
193
+ You may obtain a copy of the License at
194
+
195
+ http://www.apache.org/licenses/LICENSE-2.0
196
+
197
+ Unless required by applicable law or agreed to in writing, software
198
+ distributed under the License is distributed on an "AS IS" BASIS,
199
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200
+ See the License for the specific language governing permissions and
201
+ limitations under the License.
README.md CHANGED
@@ -1,10 +1,438 @@
1
- ---
2
- title: Starvector 1b Im2svg
3
- emoji: 😻
4
- colorFrom: pink
5
- colorTo: indigo
6
- sdk: docker
7
- pinned: false
8
- ---
9
-
10
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <div align="center">
2
+ <h1>💫 StarVector: Generating Scalable Vector Graphics Code from Images and Text</h1>
3
+ <img src="assets/starvector-xyz.png" alt="starvector" style="width: 800px; display: block; margin-left: auto; margin-right: auto;"/>
4
+
5
+ <a href="https://arxiv.org/abs/2312.11556" target="_blank">
6
+ <img alt="arXiv" src="https://img.shields.io/badge/arXiv-StarVector-red?logo=arxiv" height="25" />
7
+ </a>
8
+ <a href="https://starvector.github.io/" target="_blank">
9
+ <img alt="Website" src="https://img.shields.io/badge/🌎_Website-starvector.github.io-blue.svg" height="25" />
10
+ </a>
11
+ <a href="https://huggingface.co/starvector/starvector-1b-im2svg" target="_blank">
12
+ <img alt="HF Models: StarVector" src="https://img.shields.io/badge/%F0%9F%A4%97%20_Model-StarVector--1B-ffc107?color=ffc107&logoColor=white" height="25" />
13
+ </a>
14
+ <a href="https://huggingface.co/starvector/starvector-8b-im2svg" target="_blank">
15
+ <img alt="HF Models: StarVector" src="https://img.shields.io/badge/%F0%9F%A4%97%20_Model-StarVector--8B-ffc107?color=ffc107&logoColor=white" height="25" />
16
+ </a>
17
+ <a href="https://huggingface.co/datasets/starvector/svg-stack" target="_blank">
18
+ <img alt="HF Dataset: SVG-Stack" src="https://img.shields.io/badge/%F0%9F%A4%97%20_Data-SVG--Stack-ffc107?color=ffc107&logoColor=white" height="25" />
19
+ </a>
20
+ <a href="https://huggingface.co/collections/starvector/starvector-svg-datasets-svg-bench-67811204a76475be4dd66d09" target="_blank">
21
+ <img alt="HF Dataset: SVG-Bench" src="https://img.shields.io/badge/%F0%9F%A4%97%20_Benchmark-SVG--Bench-ffc107?color=ffc107&logoColor=white" height="25" />
22
+ </a>
23
+
24
+ <div style="font-family: charter;">
25
+ <a href="https://joanrod.github.io" target="_blank">Juan A. Rodriguez</a>,
26
+ <a href="https://abhaypuri.github.io/portfolio/" target="_blank">Abhay Puri</a>,
27
+ <a href="https://shubhamagarwal92.github.io/" target="_blank">Shubham Agarwal</a>,
28
+ <a href="https://scholar.google.ca/citations?user=8vRS7F0AAAAJ&hl=en" target="_blank">Issam H. Laradji</a>,
29
+ <a href="https://scholar.google.es/citations?user=IwBx73wAAAAJ&hl=ca" target="_blank">Pau Rodriguez</a>,
30
+ <a href="https://scholar.google.es/citations?user=1jHvtfsAAAAJ&hl=ca" target="_blank">David Vazquez</a>,
31
+ <a href="https://scholar.google.com/citations?user=1ScWJOoAAAAJ&hl=en" target="_blank">Chris Pal</a>,
32
+ <a href="https://scholar.google.com/citations?user=aVfyPAoAAAAJ&hl=en" target="_blank">Marco Pedersoli</a>
33
+ </div>
34
+
35
+ </div>
36
+
37
+ ## 🔥 News
38
+ - March 2025: **StarVector Accepted at CVPR 2025**,
39
+ - StarVector has been accepted at CVPR 2025! [[Link](https://arxiv.org/abs/2312.11556)]
40
+ - Check out our website for more information [[Link](https://starvector.github.io/)]
41
+ - StarVector models are now available on Hugging Face Model Hub! [[Link](https://huggingface.co/starvector/starvector-1b-im2svg)] [[Link](https://huggingface.co/starvector/starvector-8b-im2svg)]
42
+ - SVGBench and SVG-Stack datasets are now available on Hugging Face Datasets Hub! [[Link](https://huggingface.co/datasets/starvector/svg-bench)] [[Link](https://huggingface.co/datasets/starvector/svg-stack)]
43
+
44
+ ## 🚀 Introduction
45
+ StarVector is a multimodal vision-language model for Scalable Vector Graphics (SVG) generation. It can be used to perform image2SVG and text2SVG generation. We pose image generation as a code generation task, using the power of multimodal VLMs
46
+
47
+ <div align="center">
48
+ <img src="assets/starvector-teaser.png" alt="starvector" style="width: 900px; display: block; margin-left: auto; margin-right: auto;" />
49
+ </div>
50
+
51
+ > **Abstract**: Scalable Vector Graphics (SVGs) are vital for modern image rendering due to their scalability and versatility. Previous SVG generation methods have focused on curve-based vectorization, lacking semantic understanding, often producing artifacts, and struggling with SVG primitives beyond \textit{path} curves. To address these issues, we introduce StarVector, a multimodal large language model for SVG generation. It performs image vectorization by understanding image semantics and using SVG primitives for compact, precise outputs. Unlike traditional methods, StarVector works directly in the SVG code space, leveraging visual understanding to apply accurate SVG primitives. To train StarVector, we create SVG-Stack, a diverse dataset of 2M samples that enables generalization across vectorization tasks and precise use of primitives like ellipses, polygons, and text. We address challenges in SVG evaluation, showing that pixel-based metrics like MSE fail to capture the unique qualities of vector graphics. We introduce SVG-Bench, a benchmark across 10 datasets, and 3 tasks: Image-to-SVG, Text-to-SVG generation, and diagram generation. Using this setup, StarVector achieves state-of-the-art performance, producing more compact and semantically rich SVGs.
52
+
53
+ ### Multimodal Architecture
54
+
55
+ StarVector uses a multimodal architecture to process images and text. When performing Image-to-SVG (or image vectorization), the image is projected into visual tokens, and SVG code is generated. When performing Text-to-SVG, the model only recieves the text instruction (no image is provided), and a novel SVG is created. The LLM is based of StarCoder, which we leverage to transfer coding skills to SVG generation.
56
+
57
+ <div align="center">
58
+ <img src="assets/starvector-arch.png" alt="starvector" style="width: 700px; display: block; margin-left: auto; margin-right: auto;" />
59
+ </div>
60
+
61
+ ## 📖 Table of Contents
62
+ - [💿 Installation](#installation)
63
+ - [🏎️ Quick Start - Image2SVG Generation](#quick-start---image2svg-generation)
64
+ - [🎨 Models](#models)
65
+ - [📊 Datasets](#datasets---svg-bench)
66
+ - [🏋️‍♂️ Training](#training)
67
+ - [🏆 Evaluation on SVG-Bench](#validation-on-svg-benchmarks-svg-bench)
68
+ - [🧩 Demo](#starvector-demo)
69
+ - [📚 Citation](#citation)
70
+ - [📝 License](#license)
71
+
72
+
73
+ ## Installation
74
+
75
+ 1. Clone this repository and navigate to star-vector folder
76
+ ```bash
77
+ git clone https://github.com/joanrod/star-vector.git
78
+ cd star-vector
79
+ ```
80
+
81
+ 2. Install Package
82
+ ```Shell
83
+ conda create -n starvector python=3.11.3 -y
84
+ conda activate starvector
85
+ pip install --upgrade pip # enable PEP 660 support
86
+ pip install -e .
87
+ ```
88
+
89
+ 3. Install additional packages for training
90
+ ```
91
+ pip install -e ".[train]"
92
+ ```
93
+
94
+ ### Upgrade to latest code base
95
+
96
+ ```Shell
97
+ git pull
98
+ pip install -e .
99
+ ```
100
+
101
+ ## Quick Start - Image2SVG Generation
102
+
103
+ ```Python
104
+ from PIL import Image
105
+ from starvector.model.starvector_arch import StarVectorForCausalLM
106
+ from starvector.data.util import process_and_rasterize_svg
107
+
108
+ model_name = "starvector/starvector-8b-im2svg"
109
+
110
+ starvector = StarVectorForCausalLM.from_pretrained(model_name)
111
+
112
+ starvector.cuda()
113
+ starvector.eval()
114
+
115
+ image_pil = Image.open('assets/examples/sample-0.png')
116
+ image = starvector.process_images([image_pil])[0].cuda()
117
+ batch = {"image": image}
118
+
119
+ raw_svg = starvector.generate_im2svg(batch, max_length=1000)[0]
120
+ svg, raster_image = process_and_rasterize_svg(raw_svg)
121
+ ```
122
+
123
+ ### Use it from HuggingFace AutoModel
124
+
125
+ ```Python
126
+ from PIL import Image
127
+ from transformers import AutoModelForCausalLM, AutoTokenizer, AutoProcessor
128
+ from starvector.data.util import process_and_rasterize_svg
129
+ import torch
130
+
131
+ model_name = "starvector/starvector-8b-im2svg"
132
+
133
+ starvector = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, trust_remote_code=True)
134
+ processor = starvector.model.processor
135
+ tokenizer = starvector.model.svg_transformer.tokenizer
136
+
137
+ starvector.cuda()
138
+ starvector.eval()
139
+
140
+ image_pil = Image.open('assets/examples/sample-18.png')
141
+
142
+ image = processor(image_pil, return_tensors="pt")['pixel_values'].cuda()
143
+ if not image.shape[0] == 1:
144
+ image = image.squeeze(0)
145
+ batch = {"image": image}
146
+
147
+ raw_svg = starvector.generate_im2svg(batch, max_length=4000)[0]
148
+ svg, raster_image = process_and_rasterize_svg(raw_svg)
149
+ ```
150
+
151
+
152
+ ## Models
153
+
154
+ We provide [Hugging Face 🤗 model checkpoints](https://huggingface.co/collections/starvector/starvector-models-6783b22c7bd4b43d13cb5289) for image2SVG vectorization, for 💫 StarVector-8B and 💫 StarVector-1B. These are the results on SVG-Bench, using the DinoScore metric.
155
+
156
+ | Method | SVG-Stack | SVG-Fonts | SVG-Icons | SVG-Emoji | SVG-Diagrams |
157
+ |---------------|-----------|-----------|-----------|-----------|--------------|
158
+ | AutoTrace | 0.942 | 0.954 | 0.946 | 0.975 | 0.874 |
159
+ | Potrace | 0.898 | 0.967 | 0.972 | 0.882 | 0.875 |
160
+ | VTracer | 0.954 | 0.964 | 0.940 | 0.981 | 0.882 |
161
+ | Im2Vec | 0.692 | 0.733 | 0.754 | 0.732 | - |
162
+ | LIVE | 0.934 | 0.956 | 0.959 | 0.969 | 0.870 |
163
+ | DiffVG | 0.810 | 0.821 | 0.952 | 0.814 | 0.822 |
164
+ | GPT-4-V | 0.852 | 0.842 | 0.848 | 0.850 | - |
165
+ | 💫 StarVector-1B (🤗 [Link](https://huggingface.co/starvector/starvector-1b-im2svg)) | 0.926 | 0.978 | 0.975 | 0.929 | 0.943 |
166
+ | 💫 StarVector-8B (🤗 [Link](https://huggingface.co/starvector/starvector-8b-im2svg)) | **0.966** | **0.982** | **0.984** | **0.981** | **0.959** |
167
+
168
+ *Note*: StarVector models will not work for natural images or illustrations, as they have not been trained on those images. They excel in vectorizing icons, logotypes, technical diagrams, graphs, and charts.
169
+
170
+ ## Datasets - SVG-Bench
171
+ SVG-Bench is a benchmark for evaluating SVG generation models. It contains 10 datasets, and 3 tasks: Image-to-SVG, Text-to-SVG, and Diagram-to-SVG.
172
+
173
+ See our [Huggingface 🤗 Dataset Collection](https://huggingface.co/collections/starvector/starvector-svg-datasets-67811204a76475be4dd66d09)
174
+
175
+ | Dataset | Train | Val | Test | Token Length | SVG Primitives | Annotation |
176
+ |-----------------|--------|-------|------|------------------|----------------|----------------|
177
+ | SVG-Stack (🤗 [Link](https://huggingface.co/datasets/starvector/svg-stack)) | 2.1M | 108k | 5.7k | 1,822 ± 1,808 | All | [Captions](https://huggingface.co/datasets/starvector/text2svg-stack) |
178
+ | SVG-Stack_sim (🤗 [Link](https://huggingface.co/datasets/starvector/svg-stack-simple)) | 601k | 30.1k | 1.5k | 2k ± 918 | Vector path | - |
179
+ | SVG-Diagrams (🤗 [Link](https://huggingface.co/datasets/starvector/svg-diagrams)) | - | - | 472 | 3,486 ± 1,918 | All | - |
180
+ | SVG-Fonts (🤗 [Link](https://huggingface.co/datasets/starvector/svg-fonts)) | 1.8M | 91.5k | 4.8k | 2,121 ± 1,868 | Vector path | Font letter |
181
+ | SVG-Fonts_sim (🤗 [Link](https://huggingface.co/datasets/starvector/svg-fonts-simple)) | 1.4M | 71.7k | 3.7k | 1,722 ± 723 | Vector path | Font letter |
182
+ | SVG-Emoji (🤗 [Link](https://huggingface.co/datasets/starvector/svg-emoji)) | 8.7k | 667 | 668 | 2,551 ± 1,805 | All | - |
183
+ | SVG-Emoji_sim (🤗 [Link](https://huggingface.co/datasets/starvector/svg-emoji-simple)) | 580 | 57 | 96 | 2,448 ± 1,026 | Vector Path | - |
184
+ | SVG-Icons (🤗 [Link](https://huggingface.co/datasets/starvector/svg-icons)) | 80.4k | 6.2k | 2.4k | 2,449 ± 1,543 | Vector path | - |
185
+ | SVG-Icons_sim (🤗 [Link](https://huggingface.co/datasets/starvector/svg-icons-simple)) | 80,435 | 2,836 | 1,277| 2,005 ± 824 | Vector path | - |
186
+ | SVG-FIGR (🤗 [Link](https://huggingface.co/datasets/starvector/FIGR-SVG)) | 270k | 27k | 3k | 5,342 ± 2,345 | Vector path | Class, Caption |
187
+
188
+
189
+ >We offer a summary of statistics about the datasets used in our training and evaluation experiments. This datasets are included in SVG-Bench. The subscript _sim_ stands for the simplified version of the dataset, as required by some baselines.
190
+
191
+ ## Training
192
+
193
+ ### Confirm dependencies are installed
194
+
195
+ ```bash
196
+ pip install -e ".[train]"
197
+ ```
198
+
199
+ ### Set environment variables
200
+ We recommend setting the following environment variables:
201
+
202
+ ```bash
203
+ export HF_HOME=<path to the folder where you want to store the models>
204
+ export HF_TOKEN=<your huggingface token>
205
+ export WANDB_API_KEY=<your wandb token>
206
+ export OUTPUT_DIR=<path/to/output>
207
+ ```
208
+
209
+ cd the root of the repository.
210
+
211
+ ```Shell
212
+ cd star-vector
213
+ ```
214
+
215
+ ### Image2SVG Pretraining (Stage 1)
216
+
217
+ We have different training approaches for StarVector-1B and StarVector-8B. StarVector-1B can be trained using Deepspeed, while StarVector-8B requires FSDP.
218
+
219
+ #### StarVector-1B Training
220
+
221
+ You can use the following command to train StarVector-1B on SVG-Stack for the Image2SVG vectorization task, using Deepspeed and Accelerate
222
+
223
+ ```bash
224
+ # StarVector-1B
225
+ accelerate launch --config_file configs/accelerate/deepspeed-8-gpu.yaml starvector/train/train.py config=configs/models/starvector-1b/im2svg-stack.yaml
226
+ ```
227
+
228
+ #### StarVector-8B Training
229
+
230
+ You can use the following command to train StarVector-8B on SVG-Stack for the Image2SVG vectorization task, using FSDP and Accelerate. We provide the torchrun command to support multi-nodes and multi-GPUs.
231
+
232
+ ```bash
233
+ # StarVector-8B
234
+ torchrun \
235
+ --nproc-per-node=8 \
236
+ --nnodes=1 \
237
+ starvector/train/train.py \
238
+ config=configs/models/starvector-8b/im2svg-stack.yaml
239
+ ```
240
+
241
+
242
+ ### Finetuning StarVector (Stage 2)
243
+
244
+ After pretraining StarVector on image vectorization, we finetune it on additional SVG tasks like Text2SVG, and SVG-Bench datasets.
245
+
246
+ #### Text2SVG Finetuning
247
+
248
+ ```bash
249
+ # StarVector-1B
250
+ accelerate launch --config_file config/accelerate/deepspeed-8-gpu.yaml starvector/train/train.py config=configs/models/starvector-1b/text2svg-stack.yaml
251
+
252
+ # StarVector-8B
253
+ torchrun \
254
+ --nproc-per-node=8 \
255
+ --nnodes=1 \
256
+ starvector/train/train.py \
257
+ config=configs/models/starvector-8b/text2svg-stack.yaml
258
+ ```
259
+
260
+ #### SVG-Bench Finetuning
261
+
262
+ ```bash
263
+ # StarVector-1B
264
+ accelerate launch --config_file config/accelerate/deepspeed-8-gpu.yaml starvector/train/train.py config=configs/models/starvector-1b/im2svg-{fonts,icons,emoji}.yaml
265
+
266
+ # StarVector-8B
267
+ torchrun \
268
+ --nproc-per-node=8 \
269
+ --nnodes=1 \
270
+ starvector/train/train.py \
271
+ config=configs/models/starvector-8b/im2svg-{fonts,icons,emoji}.yaml
272
+ ```
273
+
274
+ We also provide shell scripts in `scripts/train/*`
275
+
276
+ ## Validation on SVG Benchmarks (⭐ SVG-Bench)
277
+
278
+ We validate StarVector on ⭐ SVG-Bench Benchmark. We provide the SVGValidator class that allows you to run StarVector using **1) the HuggingFace generation backend** or **2) the VLLM backend**. The later is substantially faster thanks to the use of Paged Attention.
279
+
280
+ ### HuggingFace Generation Backend
281
+ Let's start with the evaluation for StarVector-1B and StarVector-8B on SVG-Stack, using the HuggingFace generation backend (StarVectorHFAPIValidator). To override the input arguments, you can add cli args following the yaml file structure.
282
+
283
+ ```bash
284
+ # StarVector-1B on SVG-Stack, using the HuggingFace backend
285
+ python starvector/validation/validate.py \
286
+ config=configs/generation/hf/starvector-1b/im2svg.yaml \
287
+ dataset.name=starvector/svg-stack
288
+
289
+ # StarVector-8B on SVG-Stack, using the vanilla HuggingFace generation API
290
+ python starvector/validation/validate.py \
291
+ config=configs/generation/hf/starvector-8b/im2svg.yaml \
292
+ dataset.name=starvector/svg-stack
293
+ ```
294
+
295
+ ### vLLM Backend
296
+
297
+ For using the vLLM backend (StarVectorVLLMAPIValidator), first install our StarVector fork of VLLM, [here](https://github.com/starvector/vllm).
298
+
299
+ ```bash
300
+ git clone https://github.com/starvector/vllm.git
301
+ cd vllm
302
+ pip install -e .
303
+ ```
304
+
305
+ Then, launch the using the vllm config file (it uses StarVectorVLLMValidator):
306
+
307
+ ```bash
308
+ # StarVector-1B
309
+ python starvector/validation/validate.py \
310
+ config=configs/generation/vllm/starvector-1b/im2svg.yaml \
311
+ dataset.name=starvector/svg-stack
312
+
313
+ # StarVector-8B
314
+ python starvector/validation/validate.py \
315
+ config=configs/generation/vllm/starvector-8b/im2svg.yaml \
316
+ dataset.name=starvector/svg-stack
317
+ ```
318
+
319
+ #### Generate using Temperature Sweep
320
+ Temperature sweep is an evaluation technique where we:
321
+ 1. Generate multiple SVG candidates using different temperature values (controlling randomness in generation)
322
+ 2. Evaluate each candidate using the DinoScore metric
323
+ 3. Select the best performing SVG as the final output
324
+
325
+ This approach improves result quality by exploring multiple generation possibilities, though it requires more computation time.
326
+
327
+
328
+ ```bash
329
+ # StarVector-1B (vLLM)
330
+ python starvector/validation/run_validator.py \
331
+ config=configs/generation/vllm/starvector-1b/im2svg.yaml \
332
+ dataset.name=svg-stack \
333
+ generation_params.generation_sweep=True \
334
+ generation_params.num_generations_different_temp=5 \
335
+ generation_params.min_temperature=0.0 \
336
+ generation_params.max_temperature=0.5
337
+
338
+ # StarVector-8B (vLLM)
339
+ python starvector/validation/run_validator.py \
340
+ config=configs/generation/vllm/starvector-8b/im2svg.yaml \
341
+ dataset.name=svg-stack \
342
+ generation_params.generation_sweep=True \
343
+ generation_params.num_generations_different_temp=10 \
344
+ generation_params.min_temperature=0.0 \
345
+ generation_params.max_temperature=0.5
346
+
347
+ ```
348
+
349
+ We provide evaluation scripts in `scripts/eval/*`
350
+
351
+
352
+ ## StarVector Demo
353
+
354
+ The demo provides two options for converting images to SVG code:
355
+ 1. HuggingFace generation functionality
356
+ 2. VLLM (recommended) - offers faster generation speed
357
+
358
+ ### Option 1: HuggingFace Generation with Gradio Web UI
359
+
360
+ We provide a Gradio web UI for you to play with our model.
361
+
362
+ #### Launch a controller
363
+ ```Shell
364
+ python -m starvector.serve.controller --host 0.0.0.0 --port 10000
365
+ ```
366
+
367
+ #### Launch a gradio web server.
368
+ ```Shell
369
+ python -m starvector.serve.gradio_web_server --controller http://localhost:10000 --model-list-mode reload --port 7000
370
+ ```
371
+ You just launched the Gradio web interface. Now, you can open the web interface with the URL printed on the screen. You may notice that there is no model in the model list. Do not worry, as we have not launched any model worker yet. It will be automatically updated when you launch a model worker.
372
+
373
+ #### Launch a model worker
374
+
375
+ This is the actual *worker* that performs the inference on the GPU. Each worker is responsible for a single model specified in `--model-path`.
376
+
377
+ ```Shell
378
+ python -m starvector.serve.model_worker --host 0.0.0.0 --controller http://localhost:10000 --port 40000 --worker http://localhost:40000 --model-path joanrodai/starvector-1.4b
379
+ ```
380
+ Wait until the process finishes loading the model and you see "Uvicorn running on ...". Now, refresh your Gradio web UI, and you will see the model you just launched in the model list.
381
+
382
+ You can launch as many workers as you want, and compare between different model checkpoints in the same Gradio interface. Please keep the `--controller` the same, and modify the `--port` and `--worker` to a different port number for each worker.
383
+
384
+
385
+ ```Shell
386
+ vllm serve starvector/starvector-8b-im2svg --chat-template configs/chat-template.jinja --trust-remote-code --port 8001 --max-model-len 16000
387
+
388
+ python -m starvector.serve.model_worker --host 0.0.0.0 --controller http://localhost:10000 --port <different from 40000, say 40001> --worker http://localhost:<change accordingly, i.e. 40001> --model-path <ckpt2>
389
+ ```
390
+
391
+ #### Option 2: Launch VLLM
392
+
393
+ 0. Remember to clone the starvector/vllm fork (it has modifications for starvector).
394
+
395
+ ```Shell
396
+ git clone https://github.com/starvector/vllm.git
397
+ cd vllm
398
+ pip install -e .
399
+ ```
400
+
401
+ 1. Call this to launch the VLLM endpoint
402
+
403
+
404
+ ```Shell
405
+ vllm serve starvector/starvector-1b-im2svg --chat-template configs/chat-template.jinja --trust-remote-code --port 8000 --max-model-len 8192
406
+ ```
407
+
408
+ 2. Create the demo for VLLM
409
+
410
+ ```Shell
411
+ python -m starvector.serve.vllm_api_gradio.controller --host 0.0.0.0 --port 10000
412
+ python -m starvector.serve.vllm_api_gradio.gradio_web_server --controller http://localhost:10000 --model-list-mode reload --port 7000
413
+ python -m starvector.serve.vllm_api_gradio.model_worker --host 0.0.0.0 --controller http://localhost:10000 --port 40000 --worker http://localhost:40000 --model-name starvector/starvector-1b-im2svg --vllm-base-url http://localhost:8000
414
+ ```
415
+
416
+ 3. Add more models by serving them with VLLM and calling a new model worker
417
+
418
+ ```Shell
419
+ vllm serve starvector/starvector-8b-im2svg --chat-template configs/chat-template.jinja --trust-remote-code --port 8001 --max-model-len 16384
420
+
421
+ python -m starvector.serve.vllm_api_gradio.model_worker --host 0.0.0.0 --controller http://localhost:10000 --port 40001 --worker http://localhost:40001 --model-name starvector/starvector-8b-im2svg --vllm-base-url http://localhost:8001
422
+ ```
423
+
424
+ ## Citation
425
+ ```
426
+ @misc{rodriguez2024starvector,
427
+ title={StarVector: Generating Scalable Vector Graphics Code from Images and Text},
428
+ author={Juan A. Rodriguez and Abhay Puri and Shubham Agarwal and Issam H. Laradji and Pau Rodriguez and Sai Rajeswar and David Vazquez and Christopher Pal and Marco Pedersoli},
429
+ year={2024},
430
+ eprint={2312.11556},
431
+ archivePrefix={arXiv},
432
+ primaryClass={cs.CV},
433
+ url={https://arxiv.org/abs/2312.11556},
434
+ }
435
+ ```
436
+
437
+ ## License
438
+ This project is licensed under the Apache License, Version 2.0 - see the [LICENSE](LICENSE) file for details.
assets/examples/sample-0.png ADDED
assets/examples/sample-1.png ADDED
assets/examples/sample-15.png ADDED
assets/examples/sample-16.png ADDED
assets/examples/sample-17.png ADDED
assets/examples/sample-18.png ADDED
assets/examples/sample-4.png ADDED
assets/examples/sample-6.png ADDED
assets/examples/sample-7.png ADDED
configs/accelerate/1-gpu.yaml ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ compute_environment: LOCAL_MACHINE
2
+ deepspeed_config: {}
3
+ distributed_type: MULTI_GPU
4
+ downcast_bf16: 'no'
5
+ dynamo_backend: 'NO'
6
+ fsdp_config: {}
7
+ gpu_ids: all
8
+ machine_rank: 0
9
+ main_training_function: main
10
+ megatron_lm_config: {}
11
+ mixed_precision: 'bf16'
12
+ num_machines: 1
13
+ num_processes: 1
14
+ rdzv_backend: static
15
+ same_network: true
16
+ use_cpu: false
configs/accelerate/2-gpu.yaml ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ compute_environment: LOCAL_MACHINE
2
+ deepspeed_config: {}
3
+ distributed_type: MULTI_GPU
4
+ downcast_bf16: 'no'
5
+ dynamo_backend: 'NO'
6
+ fsdp_config: {}
7
+ gpu_ids: all
8
+ machine_rank: 0
9
+ main_training_function: main
10
+ megatron_lm_config: {}
11
+ mixed_precision: 'bf16'
12
+ num_machines: 1
13
+ num_processes: 2
14
+ rdzv_backend: static
15
+ same_network: true
16
+ use_cpu: false
configs/accelerate/4-gpu.yaml ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ compute_environment: LOCAL_MACHINE
2
+ deepspeed_config: {}
3
+ distributed_type: MULTI_GPU
4
+ downcast_bf16: 'no'
5
+ dynamo_backend: 'NO'
6
+ fsdp_config: {}
7
+ gpu_ids: all
8
+ machine_rank: 0
9
+ main_training_function: main
10
+ megatron_lm_config: {}
11
+ mixed_precision: 'bf16'
12
+ num_machines: 1
13
+ num_processes: 4
14
+ rdzv_backend: static
15
+ same_network: true
16
+ use_cpu: false
configs/accelerate/8-gpu.yaml ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ compute_environment: LOCAL_MACHINE
2
+ deepspeed_config: {}
3
+ distributed_type: MULTI_GPU
4
+ downcast_bf16: 'no'
5
+ dynamo_backend: 'NO'
6
+ fsdp_config: {}
7
+ gpu_ids: all
8
+ machine_rank: 0
9
+ main_training_function: main
10
+ megatron_lm_config: {}
11
+ mixed_precision: 'bf16'
12
+ num_machines: 1
13
+ num_processes: 8
14
+ rdzv_backend: static
15
+ same_network: true
16
+ use_cpu: false
configs/accelerate/deepspeed-1-gpu.yaml ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ compute_environment: LOCAL_MACHINE
2
+ deepspeed_config:
3
+ gradient_clipping: 1.0
4
+ offload_optimizer_device: none
5
+ offload_param_device: none
6
+ zero3_init_flag: false
7
+ zero_stage: 2
8
+ distributed_type: DEEPSPEED
9
+ downcast_bf16: 'no'
10
+ fsdp_config: {}
11
+ machine_rank: 0
12
+ main_training_function: main
13
+ mixed_precision: 'bf16'
14
+ num_machines: 1
15
+ num_processes: 1
16
+ rdzv_backend: static
17
+ same_network: true
18
+ tpu_env: []
19
+ tpu_use_cluster: false
20
+ tpu_use_sudo: false
21
+ use_cpu: false
configs/accelerate/deepspeed-2-gpu.yaml ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ compute_environment: LOCAL_MACHINE
2
+ deepspeed_config:
3
+ gradient_clipping: 1.0
4
+ offload_optimizer_device: none
5
+ offload_param_device: none
6
+ zero3_init_flag: false
7
+ zero_stage: 2
8
+ distributed_type: DEEPSPEED
9
+ downcast_bf16: 'no'
10
+ fsdp_config: {}
11
+ machine_rank: 0
12
+ main_training_function: main
13
+ mixed_precision: 'bf16'
14
+ num_machines: 1
15
+ num_processes: 2
16
+ rdzv_backend: static
17
+ same_network: true
18
+ tpu_env: []
19
+ tpu_use_cluster: false
20
+ tpu_use_sudo: false
21
+ use_cpu: false
configs/accelerate/deepspeed-4-gpu.yaml ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ compute_environment: LOCAL_MACHINE
2
+ deepspeed_config:
3
+ gradient_clipping: 1.0
4
+ offload_optimizer_device: none
5
+ offload_param_device: none
6
+ zero3_init_flag: false
7
+ zero_stage: 2
8
+ distributed_type: DEEPSPEED
9
+ downcast_bf16: 'no'
10
+ fsdp_config: {}
11
+ machine_rank: 0
12
+ main_training_function: main
13
+ mixed_precision: 'bf16'
14
+ num_machines: 1
15
+ num_processes: 4
16
+ rdzv_backend: static
17
+ same_network: true
18
+ tpu_env: []
19
+ tpu_use_cluster: false
20
+ tpu_use_sudo: false
21
+ use_cpu: false
configs/accelerate/deepspeed-8-gpu.yaml ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ compute_environment: LOCAL_MACHINE
2
+ deepspeed_config:
3
+ gradient_clipping: 1.0
4
+ offload_optimizer_device: none
5
+ offload_param_device: none
6
+ zero3_init_flag: false
7
+ zero_stage: 2
8
+ distributed_type: DEEPSPEED
9
+ downcast_bf16: 'no'
10
+ fsdp_config: {}
11
+ machine_rank: 0
12
+ main_training_function: main
13
+ mixed_precision: 'bf16'
14
+ num_machines: 1
15
+ num_processes: 8
16
+ rdzv_backend: static
17
+ same_network: true
18
+ tpu_env: []
19
+ tpu_use_cluster: false
20
+ tpu_use_sudo: false
21
+ use_cpu: false
configs/accelerate/deespeed.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bf16": {
3
+ "enabled": false
4
+ },
5
+ "zero_optimization": {
6
+ "stage": 3,
7
+ "offload_optimizer": {
8
+ "device": "cpu"
9
+ },
10
+ "offload_param": {
11
+ "device": "cpu"
12
+ },
13
+ "overlap_comm": true,
14
+ "contiguous_gradients": true,
15
+ "reduce_bucket_size": "auto",
16
+ "stage3_prefetch_bucket_size": "auto",
17
+ "stage3_param_persistence_threshold": "auto",
18
+ "sub_group_size": 1e9,
19
+ "stage3_max_live_parameters": 1e9,
20
+ "stage3_max_reuse_distance": 1e9,
21
+ "stage3_gather_16bit_weights_on_model_save": true
22
+ },
23
+ "gradient_accumulation_steps": 4,
24
+ "gradient_clipping": "auto",
25
+ "steps_per_print": 2000,
26
+ "train_batch_size": "auto",
27
+ "train_micro_batch_size_per_gpu": "auto",
28
+ "wall_clock_breakdown": false
29
+ }
configs/accelerate/val-deepspeed-1-gpu.yaml ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ compute_environment: LOCAL_MACHINE
2
+ deepspeed_config:
3
+ gradient_clipping: 1.0
4
+ offload_optimizer_device: none
5
+ offload_param_device: none
6
+ zero3_init_flag: false
7
+ zero_stage: 1
8
+ distributed_type: DEEPSPEED
9
+ downcast_bf16: 'no'
10
+ fsdp_config: {}
11
+ machine_rank: 0
12
+ main_training_function: main
13
+ mixed_precision: 'bf16'
14
+ num_machines: 1
15
+ num_processes: 1
16
+ rdzv_backend: static
17
+ same_network: true
18
+ tpu_env: []
19
+ tpu_use_cluster: false
20
+ tpu_use_sudo: false
21
+ use_cpu: false
configs/chat-template.jinja ADDED
@@ -0,0 +1 @@
 
 
1
+ {% for message in messages %}{{ message.content }}{% endfor %}
configs/generation/hf/starvector-1b/im2svg.yaml ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # General configuration
2
+ run:
3
+ project_name: "starvector-RL-eval"
4
+ out_dir: "/mnt/starvector/RL/logs/eval"
5
+ device: cuda
6
+ report_to: wandb
7
+ run_id: test-run
8
+ log_images: false
9
+
10
+ # Model configuration
11
+ model:
12
+ name: "starvector/starvector-1b-im2svg" # Required: Model name for HF-based model
13
+ from_checkpoint: false
14
+ generation_engine: "hf"
15
+ task: im2svg
16
+ torch_dtype: float16
17
+ # image_processor: clip # is this needed?
18
+
19
+ # Dataset configuration
20
+ dataset:
21
+ dataset_name: starvector/svg-stack-RL # Required: Name of the dataset to evaluate on
22
+ config_name: null # in bigodcs set Image2SVG
23
+ split: test
24
+ batch_size: 8
25
+ num_workers: 4
26
+ im_size: 224
27
+ num_samples: -1
28
+
29
+ # vllm https://docs.vllm.ai/en/v0.5.5/dev/sampling_params.html
30
+ # hf https://huggingface.co/docs/transformers/main_classes/text_generation
31
+ generation_params:
32
+ # Text generation parameters
33
+ max_length: 7800
34
+ min_length: 10
35
+ num_beams: 1
36
+ temperature: 0.2
37
+ generation_sweep: false # Controls multi-temperature sampling, rank based sampling
38
+ # num_generations_different_temp: 1
39
+ # min_temperature: 0.0
40
+ # max_temperature: 0.5
41
+ num_captions: 1
42
+ repetition_penalty: 1.0
43
+ length_penalty: 1.0
44
+ presence_penalty: 0.0 # only used in vllm
45
+ frequency_penalty: 0.0
46
+ top_p: 0.95
47
+ do_sample: true # turn this off for greedy decoding
48
+ use_nucleus_sampling: true
49
+ logit_bias: 5 # if this is not false, the model will be biased to the svg_end_token_id
50
+ stream: false
51
+
52
+
configs/generation/hf/starvector-1b/text2svg.yaml ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # General configuration
2
+ run:
3
+ project_name: "starvector-RL-eval"
4
+ out_dir: "eval_results"
5
+ device: cuda
6
+ report_to: wandb
7
+ run_id: test-run
8
+ log_images: false
9
+
10
+ # Model configuration
11
+ model:
12
+ name: "starvector/starvector-1b-text2svg"
13
+ generation_engine: "hf"
14
+ task: text2svg
15
+ torch_dtype: bfloat16
16
+ image_processor: null
17
+
18
+ # Dataset configuration
19
+ dataset:
20
+ name: svg-stack
21
+ batch_size: 2
22
+ num_workers: 4
23
+ num_samples: -1
24
+
25
+ # vllm https://docs.vllm.ai/en/v0.5.5/dev/sampling_params.html
26
+ # hf https://huggingface.co/docs/transformers/main_classes/text_generation
27
+ generation_params:
28
+ max_length: 10000
29
+ min_length: 10
30
+ num_beams: 3
31
+ temperature: 1.0
32
+ num_captions: 1
33
+ repetition_penalty: 1.0
34
+ length_penalty: 0.5
35
+ presence_penalty: 0.0 # only used in vllm
36
+ frequency_penalty: 0.0
37
+ top_p: 0.95
38
+ do_sample: true # turn this off for greedy decoding
39
+ use_nucleus_sampling: true
40
+ im_size: 384
41
+ dpi: 2
42
+ scale: 300
43
+ logit_bias: 10 # if this is not false, the model will be biased to the svg_end_token_id
44
+ stream: false
configs/generation/hf/starvector-8b/im2svg.yaml ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # General configuration
2
+ run:
3
+ project_name: "starvector-RL-eval"
4
+ out_dir: "eval_results"
5
+ device: cuda
6
+ report_to: wandb
7
+ run_id: test-run
8
+ log_images: false
9
+
10
+ # Model configuration
11
+ model:
12
+ name: "starvector/starvector-8b-im2svg"
13
+ from_checkpoint: false
14
+ generation_engine: "hf"
15
+ task: im2svg
16
+ torch_dtype: bfloat16
17
+ # image_processor: siglip_384
18
+
19
+ # Dataset configuration
20
+ dataset:
21
+ dataset_name: starvector/svg-stack-RL
22
+ config_name: null
23
+ split: test
24
+ batch_size: 2
25
+ num_workers: 4
26
+ im_size: 384
27
+ num_samples: -1
28
+
29
+ # vllm https://docs.vllm.ai/en/v0.5.5/dev/sampling_params.html
30
+ # hf https://huggingface.co/docs/transformers/main_classes/text_generation
31
+ generation_params:
32
+ max_length: 16000
33
+ min_length: 10
34
+ num_beams: 1
35
+ temperature: 0.7
36
+ generation_sweep: false # Controls multi-temperature sampling, rank based sampling
37
+ # num_generations_different_temp: 1
38
+ # min_temperature: 0.0
39
+ # max_temperature: 0.5
40
+ num_captions: 1
41
+ repetition_penalty: 1.0
42
+ length_penalty: 0.5
43
+ presence_penalty: 0.0 # only used in vllm
44
+ frequency_penalty: 0.0
45
+ top_p: 0.95
46
+ do_sample: true # turn this off for greedy decoding
47
+ use_nucleus_sampling: true
48
+ logit_bias: 5 # if this is not false, the model will be biased to the svg_end_token_id
49
+ stream: false
50
+
configs/generation/hf/starvector-8b/text2svg.yaml ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # General configuration
2
+ run:
3
+ out_dir: "eval_results"
4
+ device: cuda
5
+
6
+ # Model configuration
7
+ model:
8
+ name: "starvector/starvector-8b-text2svg"
9
+ generation_engine: "hf"
10
+ task: text2svg
11
+ torch_dtype: bfloat16
12
+ image_processor: clip
13
+
14
+ # Dataset configuration
15
+ dataset:
16
+ name: svg-stack
17
+ batch_size: 2
18
+ num_workers: 4
19
+ num_samples: -1
20
+
21
+ # vllm https://docs.vllm.ai/en/v0.5.5/dev/sampling_params.html
22
+ # hf https://huggingface.co/docs/transformers/main_classes/text_generation
23
+ generation_params:
24
+ max_length: 10000
25
+ min_length: 10
26
+ num_beams: 3
27
+ temperature: 1.0
28
+ num_captions: 1
29
+ repetition_penalty: 1.0
30
+ length_penalty: 0.5
31
+ presence_penalty: 0.0 # only used in vllm
32
+ frequency_penalty: 0.0
33
+ top_p: 0.95
34
+ do_sample: true # turn this off for greedy decoding
35
+ use_nucleus_sampling: true
36
+ im_size: 384
37
+ dpi: 2
38
+ scale: 300
39
+ logit_bias: 10 # if this is not false, the model will be biased to the svg_end_token_id
40
+ stream: false
configs/generation/vllm/starvector-1b/im2svg.yaml ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # General configuration
2
+ run:
3
+ project_name: "starvector-RL-eval"
4
+ out_dir: "/mnt/starvector/RL/logs/eval"
5
+ report_to: wandb
6
+ run_id: test-eval3
7
+ log_images: false
8
+
9
+ # Model configuration
10
+ model:
11
+ name: "starvector/starvector-1b-im2svg" # Required: Model name for HF-based model
12
+ from_checkpoint: false
13
+ generation_engine: "vllm"
14
+ task: im2svg
15
+ torch_dtype: float16
16
+ # image_processor: clip # is this needed?
17
+
18
+ # Dataset configuration
19
+ dataset:
20
+ dataset_name: starvector/svg-stack-RL # Required: Name of the dataset to evaluate on
21
+ config_name: null # in bigodcs set Image2SVG
22
+ split: test
23
+ batch_size: 8
24
+ num_workers: 8
25
+ im_size: 224
26
+ num_samples: 500
27
+
28
+ # vllm https://docs.vllm.ai/en/v0.5.5/dev/sampling_params.html
29
+ # hf https://huggingface.co/docs/transformers/main_classes/text_generation
30
+ generation_params:
31
+ # Text generation parameters
32
+ max_length: 7933 # 8192 - (visual tokens)
33
+ num_generations: 1
34
+ min_length: 10
35
+ num_beams: 1
36
+ temperature: 0.5
37
+ generation_sweep: false # Controls multi-temperature sampling, rank based sampling
38
+ # num_generations_different_temp: 5
39
+ # min_temperature: 0.0
40
+ # max_temperature: 0.5
41
+ num_captions: 1
42
+ frequency_penalty: 0.0
43
+ presence_penalty: 0.0
44
+ repetition_penalty: 1.0
45
+ top_p: 0.9
46
+ logit_bias: 5 # if this is not false, the model will be biased to the svg_end_token_id
47
+ min_p: 0.0
48
+ top_k: -1
49
+ stream: false
50
+
51
+
configs/generation/vllm/starvector-1b/text2svg.yaml ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # General configuration
2
+ run:
3
+ out_dir: "eval_results"
4
+ api:
5
+ key: "EMPTY"
6
+ base_url: "http://0.0.0.0:40000/v1"
7
+
8
+ # Model configuration
9
+ model:
10
+ name: "starvector/starvector-1b-text2svg"
11
+ generation_engine: "vllm"
12
+ task: text2svg
13
+ torch_dtype: bfloat16
14
+ image_processor: null
15
+
16
+ # Dataset configuration
17
+ dataset:
18
+ name: svg-stack
19
+ batch_size: 2
20
+ num_workers: 4
21
+ num_samples: -1
22
+
23
+ # vllm https://docs.vllm.ai/en/v0.5.5/dev/sampling_params.html
24
+ # hf https://huggingface.co/docs/transformers/main_classes/text_generation
25
+ generation_params:
26
+ # Text generation parameters
27
+ max_length: 16384
28
+ min_length: 10
29
+ num_beams: 1
30
+ temperature: 0.6
31
+ generation_sweep: false # Controls multi-temperature sampling, rank based sampling
32
+ # num_generations_different_temp: 1
33
+ # min_temperature: 0.0
34
+ # max_temperature: 0.5
35
+ num_captions: 1
36
+ frequency_penalty: 0.0
37
+ presence_penalty: 0.0
38
+ top_p: 0.9
39
+ logit_bias: False # if this is not false, the model will be biased to the svg_end_token_id
40
+ stream: false
configs/generation/vllm/starvector-8b/im2svg.yaml ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # General configuration
2
+ run:
3
+ out_dir: "eval_results"
4
+ api:
5
+ key: "EMPTY"
6
+ base_url: "http://0.0.0.0:40000/v1"
7
+
8
+ # Model configuration
9
+ model:
10
+ name: "starvector/starvector-8b-im2svg"
11
+ generation_engine: "vllm"
12
+ task: im2svg
13
+ torch_dtype: bfloat16
14
+ image_processor: siglip_384
15
+
16
+ # Dataset configuration
17
+ dataset:
18
+ name: svg-stack
19
+ batch_size: 2
20
+ num_workers: 4
21
+ im_size: 384
22
+ num_samples: -1
23
+ dpi: 2
24
+ scale: 300
25
+
26
+
27
+ # vllm https://docs.vllm.ai/en/v0.5.5/dev/sampling_params.html
28
+ # hf https://huggingface.co/docs/transformers/main_classes/text_generation
29
+ generation_params:
30
+ # Text generation parameters
31
+ max_length: 15806 # 16384 - (visual tokens)
32
+ min_length: 10
33
+ num_beams: 1
34
+ temperature: 0.6
35
+ generation_sweep: false # Controls multi-temperature sampling, rank based sampling
36
+ # num_generations_different_temp: 1
37
+ # min_temperature: 0.0
38
+ # max_temperature: 0.5
39
+ num_captions: 1
40
+ frequency_penalty: 0.0
41
+ presence_penalty: 0.0
42
+ top_p: 0.9
43
+ logit_bias: False # if this is not false, the model will be biased to the svg_end_token_id
44
+ stream: false
45
+
configs/generation/vllm/starvector-8b/text2svg.yaml ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # General configuration
2
+ run:
3
+ out_dir: "eval_results"
4
+ api:
5
+ key: "EMPTY"
6
+ base_url: "http://0.0.0.0:40000/v1"
7
+
8
+ # Model configuration
9
+ model:
10
+ name: "starvector/starvector-8b-text2svg"
11
+ generation_engine: "vllm"
12
+ task: text2svg
13
+ torch_dtype: bfloat16
14
+ image_processor: clip
15
+
16
+ # Dataset configuration
17
+ dataset:
18
+ name: svg-stack
19
+ batch_size: 2
20
+ num_workers: 4
21
+ num_samples: -1
22
+
23
+
24
+ # vllm https://docs.vllm.ai/en/v0.5.5/dev/sampling_params.html
25
+ # hf https://huggingface.co/docs/transformers/main_classes/text_generation
26
+ generation_params:
27
+ # Text generation parameters
28
+ max_length: 16384
29
+ min_length: 10
30
+ num_beams: 1
31
+ temperature: 0.6
32
+ generation_sweep: false # Controls multi-temperature sampling, rank based sampling
33
+ # num_generations_different_temp: 1
34
+ # min_temperature: 0.0
35
+ # max_temperature: 0.5
36
+ num_captions: 1
37
+ frequency_penalty: 0.0
38
+ presence_penalty: 0.0
39
+ top_p: 0.9
40
+ logit_bias: False # if this is not false, the model will be biased to the svg_end_token_id
41
+ stream: false
configs/metrics/im2svg.yaml ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ metrics:
2
+ L2: true
3
+ Masked-L2: false
4
+ LPIPS: true
5
+ SSIM: true
6
+ FID: false
7
+ FID_clip: false
8
+ CLIPScore: false
9
+ CountTokenLength: true
10
+ ratio_post_processed: false
11
+ ratio_non_compiling: false
12
+ DinoScore: true
configs/metrics/text2svg.yaml ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ metrics:
2
+ L2: false
3
+ Masked-L2: false
4
+ LPIPS: false
5
+ SSIM: false
6
+ FID: true
7
+ FID_clip: true
8
+ CLIPScore: true
9
+ CountTokenLength: true
10
+ ratio_post_processed: true
11
+ ratio_non_compiling: true
12
+ DinoScore: false
configs/models/default.yaml ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ project:
2
+ project: starvector-im2svg
3
+ use_wandb: false
4
+ entity: abc
5
+ copy_code: false
6
+ model:
7
+ max_length: 8192
8
+ model_name: null # in case of creating a new model, set this to None (null)
9
+ starcoder_model_name: bigcode/starcoderbase-1b
10
+ pretrained: true
11
+ image_encoder_type: clip
12
+ use_flash_attn: true
13
+ adapter_norm: layer_norm
14
+ init_type: glorot
15
+ dropout: 0.1
16
+ task: im2svg
17
+ transformer_layer_cls: None # fsdp specific
18
+ use_cache: false
19
+ training:
20
+ save_model_epochs: 1
21
+ checkpointing_steps: 500
22
+ checkpoints_total_limit: 3
23
+ model_precision: bf16
24
+ resume_from_checkpoint: false
25
+ continue_training: false
26
+ n_epochs: 4
27
+ lr: 0.00001
28
+ gradient_accumulation_steps: 4
29
+ lr_scheduler: cosine
30
+ lr_warmup_steps: 10
31
+ adam_beta1: 0.95
32
+ adam_beta2: 0.999
33
+ adam_weight_decay: 1.0e-06
34
+ adam_epsilon: 1e-08
35
+ optimizer: adamw
36
+ start_generation_at_step: 0
37
+ train_image_encoder: true
38
+ train_LLM: true
39
+ use_gradient_checkpointing: false
40
+ fsdp:
41
+ enable: false
42
+ data:
43
+ num_workers: 4
44
+ train:
45
+ batch_size: 2
46
+ target: starvector.data.stacksvg.SVGStackDataset
47
+ params:
48
+ split: train
49
+ dataset_name: ServiceNow/svg-stack
50
+ im_size: 224
51
+ num_samples: -1
52
+ transforms: false
53
+ select_dataset_name: false
54
+ test:
55
+ batch_size: 2
56
+ target: starvector.data.stacksvg.SVGStackDataset
57
+ params:
58
+ split: test
59
+ dataset_name: ServiceNow/svg-stack
60
+ im_size: 224
61
+ num_samples: -1
62
+ transforms: false
63
+ select_dataset_name: false
64
+ generation:
65
+ max_length: 8192
66
+ min_length: 10
67
+ num_beams: 3
68
+ num_captions: 1
69
+ num_generations_different_temp: 1.5
70
+ start_temperature: 0.5
71
+ repetition_penalty: 1.0
72
+ length_penalty: 1.0
73
+ temperature: 1.0
74
+ top_p: 0.9
75
+ use_nucleus_sampling: true
76
+ im_size: 224
77
+ dpi: 2
78
+ scale: 300
79
+ num_samples_to_generate: -1
80
+ log_wandb_images: true
81
+ start_generation_at_step: -1
82
+ metrics:
83
+ L2: true
84
+ Masked-L2: false
85
+ LPIPS: true
86
+ SSIM: true
87
+ FID: false
88
+ FID_clip: false
89
+ CLIPScore: false
90
+ CountTokenLength: true
91
+ ratio_post_processed: false
92
+ ratio_non_compiling: false
93
+ DinoScore: true
configs/models/starvector-1b/im2svg-emoji.yaml ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ project:
2
+ project: starvector-1b-im2svg
3
+ use_wandb: false
4
+ entity: abc
5
+ copy_code: false
6
+ model:
7
+ max_length: 8192
8
+ model_name: null # in case of creating a new model, set this to None (null)
9
+ starcoder_model_name: bigcode/starcoderbase-1b
10
+ pretrained: true
11
+ image_encoder_type: clip
12
+ use_flash_attn: true
13
+ adapter_norm: batch_norm
14
+ init_type: glorot
15
+ dropout: 0.1
16
+ task: im2svg
17
+ transformer_layer_cls: null # fsdp specific
18
+ use_cache: false
19
+ training:
20
+ save_model_epochs: 1
21
+ checkpointing_steps: 500
22
+ checkpoints_total_limit: 3
23
+ model_precision: bf16
24
+ resume_from_checkpoint: false
25
+ continue_training: false
26
+ n_epochs: 10
27
+ lr: 0.00001
28
+ gradient_accumulation_steps: 4
29
+ lr_scheduler: cosine
30
+ lr_warmup_steps: 10
31
+ adam_beta1: 0.95
32
+ adam_beta2: 0.999
33
+ adam_weight_decay: 1.0e-06
34
+ adam_epsilon: 1e-08
35
+ optimizer: adamw
36
+ train_image_encoder: true
37
+ train_LLM: true
38
+ use_gradient_checkpointing: false
39
+ fsdp:
40
+ enable: false
41
+ data:
42
+ num_workers: 16
43
+ train:
44
+ batch_size: 2
45
+ target: starvector.data.emojisvg.EmojiSVGDataset
46
+ params:
47
+ split: train
48
+ dataset_name: starvector/svg-emoji
49
+ im_size: 224
50
+ num_samples: -1
51
+ transforms: false
52
+ select_dataset_name: false
53
+ test:
54
+ batch_size: 8
55
+ target: starvector.data.emojisvg.EmojiSVGDataset
56
+ params:
57
+ split: test
58
+ dataset_name: starvector/svg-emoji
59
+ im_size: 224
60
+ num_samples: -1
61
+ transforms: false
62
+ select_dataset_name: false
63
+ generation:
64
+ max_length: 8192
65
+ min_length: 10
66
+ num_beams: 3
67
+ temperature: 1.0
68
+ num_captions: 1
69
+ repetition_penalty: 1.0
70
+ length_penalty: 0.5
71
+ top_p: 0.95
72
+ use_nucleus_sampling: true
73
+ im_size: 224
74
+ dpi: 2
75
+ scale: 300
76
+ metrics:
77
+ L2: true
78
+ Masked-L2: false
79
+ LPIPS: true
80
+ SSIM: true
81
+ FID: false
82
+ FID_clip: false
83
+ CLIPScore: false
84
+ CountTokenLength: true
85
+ ratio_post_processed: false
86
+ ratio_non_compiling: false
87
+ DinoScore: true
configs/models/starvector-1b/im2svg-fonts.yaml ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ project:
2
+ project: starvector-1b-im2svg
3
+ use_wandb: false
4
+ entity: abc
5
+ copy_code: false
6
+ model:
7
+ max_length: 8192
8
+ model_name: null # in case of creating a new model, set this to None (null)
9
+ starcoder_model_name: bigcode/starcoderbase-1b
10
+ pretrained: true
11
+ image_encoder_type: clip
12
+ use_flash_attn: true
13
+ adapter_norm: batch_norm
14
+ init_type: glorot
15
+ dropout: 0.1
16
+ task: im2svg
17
+ transformer_layer_cls: null # fsdp specific
18
+ use_cache: false
19
+ training:
20
+ save_model_epochs: 1
21
+ checkpointing_steps: 500
22
+ checkpoints_total_limit: 3
23
+ model_precision: bf16
24
+ resume_from_checkpoint: false
25
+ continue_training: false
26
+ n_epochs: 4
27
+ lr: 0.00001
28
+ gradient_accumulation_steps: 4
29
+ lr_scheduler: cosine
30
+ lr_warmup_steps: 10
31
+ adam_beta1: 0.95
32
+ adam_beta2: 0.999
33
+ adam_weight_decay: 1.0e-06
34
+ adam_epsilon: 1e-08
35
+ optimizer: adamw
36
+ train_image_encoder: true
37
+ train_LLM: true
38
+ use_gradient_checkpointing: false
39
+ fsdp:
40
+ enable: false
41
+ data:
42
+ num_workers: 16
43
+ train:
44
+ batch_size: 4
45
+ target: starvector.data.fontsvg.FontSVGDataset
46
+ params:
47
+ split: train
48
+ dataset_name: starvector/svg-fonts
49
+ im_size: 224
50
+ num_samples: -1
51
+ transforms: false
52
+ select_dataset_name: false
53
+ test:
54
+ batch_size: 8
55
+ target: starvector.data.fontsvg.FontSVGDataset
56
+ params:
57
+ split: test
58
+ dataset_name: starvector/svg-fonts
59
+ im_size: 224
60
+ num_samples: 1000
61
+ transforms: false
62
+ select_dataset_name: false
63
+ generation:
64
+ max_length: 8192
65
+ min_length: 10
66
+ num_beams: 3
67
+ temperature: 1.0
68
+ num_captions: 1
69
+ repetition_penalty: 1.0
70
+ length_penalty: 0.5
71
+ top_p: 0.95
72
+ use_nucleus_sampling: true
73
+ im_size: 224
74
+ dpi: 2
75
+ scale: 300
76
+ metrics:
77
+ L2: true
78
+ Masked-L2: false
79
+ LPIPS: true
80
+ SSIM: true
81
+ FID: false
82
+ FID_clip: false
83
+ CLIPScore: false
84
+ CountTokenLength: true
85
+ ratio_post_processed: false
86
+ ratio_non_compiling: false
87
+ DinoScore: true
configs/models/starvector-1b/im2svg-icons.yaml ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ project:
2
+ project: starvector-1b-im2svg
3
+ use_wandb: false
4
+ entity: abc
5
+ copy_code: false
6
+ model:
7
+ max_length: 8192
8
+ model_name: null # in case of creating a new model, set this to None (null)
9
+ starcoder_model_name: bigcode/starcoderbase-1b
10
+ pretrained: true
11
+ image_encoder_type: clip
12
+ use_flash_attn: true
13
+ adapter_norm: batch_norm
14
+ init_type: glorot
15
+ dropout: 0.1
16
+ task: im2svg
17
+ transformer_layer_cls: null # fsdp specific
18
+ use_cache: false
19
+ training:
20
+ save_model_epochs: 1
21
+ checkpointing_steps: 500
22
+ checkpoints_total_limit: 3
23
+ model_precision: bf16
24
+ resume_from_checkpoint: false
25
+ continue_training: false
26
+ n_epochs: 10
27
+ lr: 0.00001
28
+ gradient_accumulation_steps: 4
29
+ lr_scheduler: cosine
30
+ lr_warmup_steps: 10
31
+ adam_beta1: 0.95
32
+ adam_beta2: 0.999
33
+ adam_weight_decay: 1.0e-06
34
+ adam_epsilon: 1e-08
35
+ optimizer: adamw
36
+ train_image_encoder: true
37
+ train_LLM: true
38
+ use_gradient_checkpointing: false
39
+ fsdp:
40
+ enable: false
41
+ data:
42
+ num_workers: 16
43
+ train:
44
+ batch_size: 4
45
+ target: starvector.data.iconsvg.SVGIconsDataset
46
+ params:
47
+ split: train
48
+ dataset_name: starvector/svg-icons
49
+ im_size: 224
50
+ num_samples: -1
51
+ transforms: false
52
+ select_dataset_name: false
53
+ test:
54
+ batch_size: 8
55
+ target: starvector.data.iconsvg.SVGIconsDataset
56
+ params:
57
+ split: test
58
+ dataset_name: starvector/svg-icons
59
+ im_size: 224
60
+ num_samples: 1000
61
+ transforms: false
62
+ select_dataset_name: false
63
+ generation:
64
+ max_length: 8192
65
+ min_length: 10
66
+ num_beams: 3
67
+ temperature: 1.0
68
+ num_captions: 1
69
+ repetition_penalty: 1.0
70
+ length_penalty: 0.5
71
+ top_p: 0.95
72
+ use_nucleus_sampling: true
73
+ im_size: 224
74
+ dpi: 2
75
+ scale: 300
76
+ metrics:
77
+ L2: true
78
+ Masked-L2: false
79
+ LPIPS: true
80
+ SSIM: true
81
+ FID: false
82
+ FID_clip: false
83
+ CLIPScore: false
84
+ CountTokenLength: true
85
+ ratio_post_processed: false
86
+ ratio_non_compiling: false
87
+ DinoScore: true
configs/models/starvector-1b/im2svg-stack.yaml ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ project:
2
+ project: starvector-1b-im2svg
3
+ use_wandb: false
4
+ entity: abc
5
+ copy_code: false
6
+ model:
7
+ max_length: 8192
8
+ model_name: null # in case of creating a new model, set this to None (null)
9
+ starcoder_model_name: bigcode/starcoderbase-1b
10
+ pretrained: true
11
+ image_encoder_type: clip
12
+ use_flash_attn: true
13
+ adapter_norm: batch_norm
14
+ init_type: glorot
15
+ dropout: 0.1
16
+ task: im2svg
17
+ transformer_layer_cls: null # fsdp specific
18
+ use_cache: false
19
+ training:
20
+ save_model_epochs: 1
21
+ checkpointing_steps: 500
22
+ checkpoints_total_limit: 3
23
+ model_precision: bf16
24
+ resume_from_checkpoint: false
25
+ continue_training: false
26
+ n_epochs: 4
27
+ lr: 0.00001
28
+ gradient_accumulation_steps: 4
29
+ lr_scheduler: cosine
30
+ lr_warmup_steps: 10
31
+ adam_beta1: 0.95
32
+ adam_beta2: 0.999
33
+ adam_weight_decay: 1.0e-06
34
+ adam_epsilon: 1e-08
35
+ optimizer: adamw
36
+ train_image_encoder: true
37
+ train_LLM: true
38
+ use_gradient_checkpointing: false
39
+ fsdp:
40
+ enable: false
41
+ data:
42
+ num_workers: 4
43
+ train:
44
+ batch_size: 2
45
+ target: starvector.data.stacksvg.SVGStackDataset
46
+ params:
47
+ split: train
48
+ dataset_name: starvector/svg-stack
49
+ im_size: 224
50
+ num_samples: -1
51
+ transforms: false
52
+ select_dataset_name: false
53
+ test:
54
+ batch_size: 2
55
+ target: starvector.data.stacksvg.SVGStackDataset
56
+ params:
57
+ split: test
58
+ dataset_name: starvector/svg-stack
59
+ im_size: 224
60
+ num_samples: -1
61
+ transforms: false
62
+ select_dataset_name: false
63
+ generation:
64
+ max_length: 8192
65
+ min_length: 10
66
+ num_beams: 3
67
+ temperature: 1.0
68
+ num_captions: 1
69
+ repetition_penalty: 1.0
70
+ length_penalty: 0.5
71
+ top_p: 0.95
72
+ use_nucleus_sampling: true
73
+ im_size: 224
74
+ dpi: 2
75
+ scale: 300
76
+ metrics:
77
+ L2: true
78
+ Masked-L2: false
79
+ LPIPS: true
80
+ SSIM: true
81
+ FID: false
82
+ FID_clip: false
83
+ CLIPScore: false
84
+ CountTokenLength: true
85
+ ratio_post_processed: false
86
+ ratio_non_compiling: false
87
+ DinoScore: true
configs/models/starvector-1b/text2svg-figr.yaml ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ project:
2
+ project: starvector-1b-text2svg
3
+ use_wandb: false
4
+ entity: joanrod
5
+ copy_code: false
6
+ model:
7
+ max_length: 8192
8
+ model_name: starvector/starvector-1b-im2svg
9
+ starcoder_model_name: bigcode/starcoderbase-1b
10
+ pretrained: true
11
+ image_encoder_type: clip
12
+ use_flash_attn: true
13
+ adapter_norm: layer_norm
14
+ init_type: normal
15
+ dropout: 0.1
16
+ task: text2svg
17
+ transformer_layer_cls: Starcoder2DecoderLayer # fsdp specific
18
+ use_cache: false
19
+ training:
20
+ save_model_epochs: 1
21
+ checkpointing_steps: 500
22
+ checkpoints_total_limit: 5
23
+ model_precision: bf16
24
+ resume_from_checkpoint: false
25
+ continue_training: false
26
+ n_epochs: 2
27
+ lr: 2e-5
28
+ gradient_accumulation_steps: 8
29
+ lr_scheduler: cosine
30
+ lr_warmup_steps: 100
31
+ adam_beta1: 0.95
32
+ adam_beta2: 0.999
33
+ adam_weight_decay: 1.0e-06
34
+ adam_epsilon: 1e-08
35
+ optimizer: adamw
36
+ use_gradient_checkpointing: false
37
+ train_image_encoder: false
38
+ train_LLM: true
39
+ fsdp:
40
+ enable: false # TODO: set this reasonably, i.e., false only if you want to use DDP or have PyTorch < 2.1
41
+ cpu_offload: false
42
+ sharding_strategy: hsdp
43
+ backward_prefetch: BACKWARD_PRE
44
+ use_orig_params: true
45
+ sync_module_states: true
46
+ forward_prefetch: false
47
+ cpu_ram_efficient_loading: true
48
+ data:
49
+ num_workers: 16
50
+ train:
51
+ batch_size: 4
52
+ target: starvector.data.figrsvg.FigrSVGDataset
53
+ params:
54
+ split: train
55
+ dataset_name: starvector/FIGR-SVG
56
+ im_size: 224
57
+ num_samples: -1
58
+ transforms: false
59
+ select_dataset_name: false
60
+ test:
61
+ batch_size: 8
62
+ target: starvector.data.figrsvg.FigrSVGDataset
63
+ params:
64
+ split: test
65
+ dataset_name: starvector/FIGR-SVG
66
+ im_size: 224
67
+ num_samples: -1
68
+ transforms: false
69
+ select_dataset_name: false
70
+ generation:
71
+ max_length: 10000
72
+ min_length: 10
73
+ num_beams: 3
74
+ temperature: 1.0
75
+ num_captions: 1
76
+ repetition_penalty: 1.0
77
+ length_penalty: 0.5
78
+ top_p: 0.95
79
+ use_nucleus_sampling: true
80
+ im_size: 384
81
+ dpi: 2
82
+ scale: 300
83
+ metrics:
84
+ L2: false
85
+ Masked-L2: false
86
+ LPIPS: false
87
+ SSIM: false
88
+ FID: false
89
+ FID_clip: false
90
+ CLIPScore: true
91
+ CountTokenLength: true
92
+ ratio_post_processed: false
93
+ ratio_non_compiling: false
94
+ DinoScore: false
configs/models/starvector-1b/text2svg-stack.yaml ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ project:
2
+ project: starvector-1b-text2svg
3
+ use_wandb: false
4
+ entity: joanrod
5
+ copy_code: false
6
+ model:
7
+ max_length: 8192
8
+ model_name: starvector/starvector-1b-im2svg
9
+ starcoder_model_name: bigcode/starcoderbase-1b
10
+ pretrained: true
11
+ image_encoder_type: clip
12
+ use_flash_attn: true
13
+ adapter_norm: layer_norm
14
+ init_type: normal
15
+ dropout: 0.1
16
+ task: text2svg
17
+ transformer_layer_cls: Starcoder2DecoderLayer # fsdp specific
18
+ use_cache: false
19
+ training:
20
+ save_model_epochs: 1
21
+ checkpointing_steps: 500
22
+ checkpoints_total_limit: 5
23
+ model_precision: bf16
24
+ resume_from_checkpoint: false
25
+ continue_training: false
26
+ n_epochs: 2
27
+ lr: 2e-5
28
+ gradient_accumulation_steps: 8
29
+ lr_scheduler: cosine
30
+ lr_warmup_steps: 100
31
+ adam_beta1: 0.95
32
+ adam_beta2: 0.999
33
+ adam_weight_decay: 1.0e-06
34
+ adam_epsilon: 1e-08
35
+ optimizer: adamw
36
+ use_gradient_checkpointing: false
37
+ train_image_encoder: false
38
+ train_LLM: true
39
+ fsdp:
40
+ enable: false # TODO: set this reasonably, i.e., false only if you want to use DDP or have PyTorch < 2.1
41
+ cpu_offload: false
42
+ sharding_strategy: hsdp
43
+ backward_prefetch: BACKWARD_PRE
44
+ use_orig_params: true
45
+ sync_module_states: true
46
+ forward_prefetch: false
47
+ cpu_ram_efficient_loading: true
48
+ data:
49
+ num_workers: 16
50
+ train:
51
+ batch_size: 1
52
+ target: starvector.data.stacksvg.SVGStackDataset
53
+ params:
54
+ split: train
55
+ dataset_name: starvector/text2svg-stack
56
+ im_size: 224
57
+ num_samples: -1
58
+ transforms: false
59
+ select_dataset_name: false
60
+ image_processor: siglip_384
61
+ test:
62
+ batch_size: 4
63
+ target: starvector.data.stacksvg.SVGStackDataset
64
+ params:
65
+ split: test
66
+ dataset_name: starvector/text2svg-stack
67
+ im_size: 224
68
+ num_samples: 64
69
+ transforms: false
70
+ select_dataset_name: false
71
+ image_processor: siglip_384
72
+ generation:
73
+ max_length: 10000
74
+ min_length: 10
75
+ num_beams: 3
76
+ temperature: 1.0
77
+ num_captions: 1
78
+ repetition_penalty: 1.0
79
+ length_penalty: 0.5
80
+ top_p: 0.95
81
+ use_nucleus_sampling: true
82
+ im_size: 384
83
+ dpi: 2
84
+ scale: 300
85
+ metrics:
86
+ L2: false
87
+ Masked-L2: false
88
+ LPIPS: false
89
+ SSIM: false
90
+ FID: false
91
+ FID_clip: false
92
+ CLIPScore: true
93
+ CountTokenLength: true
94
+ ratio_post_processed: false
95
+ ratio_non_compiling: false
96
+ DinoScore: false
configs/models/starvector-8b/im2svg-emoji.yaml ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ project:
2
+ project: starvector-8b-im2svg
3
+ use_wandb: false
4
+ entity: joanrod
5
+ copy_code: false
6
+ model:
7
+ max_length: 16000
8
+ model_name: starvector/starvector-8b-im2svg
9
+ starcoder_model_name: bigcode/starcoder2-7b
10
+ pretrained: true
11
+ image_encoder_type: siglip_384
12
+ use_flash_attn: true
13
+ adapter_norm: layer_norm
14
+ init_type: normal
15
+ dropout: 0.1
16
+ task: im2svg
17
+ transformer_layer_cls: Starcoder2DecoderLayer # fsdp specific
18
+ use_cache: false
19
+ training:
20
+ save_model_epochs: 1
21
+ checkpointing_steps: 500
22
+ checkpoints_total_limit: 5
23
+ model_precision: bf16
24
+ resume_from_checkpoint: false
25
+ continue_training: false
26
+ n_epochs: 4
27
+ lr: 0.00001
28
+ gradient_accumulation_steps: 4
29
+ lr_scheduler: cosine
30
+ lr_warmup_steps: 10
31
+ adam_beta1: 0.95
32
+ adam_beta2: 0.999
33
+ adam_weight_decay: 1.0e-06
34
+ adam_epsilon: 1e-08
35
+ optimizer: adamw
36
+ use_gradient_checkpointing: true
37
+ train_image_encoder: true
38
+ train_LLM: true
39
+ fsdp:
40
+ enable: true # TODO: set this reasonably, i.e., false only if you want to use DDP or have PyTorch < 2.1
41
+ cpu_offload: false
42
+ sharding_strategy: hsdp
43
+ backward_prefetch: BACKWARD_PRE
44
+ use_orig_params: true
45
+ sync_module_states: true
46
+ forward_prefetch: false
47
+ cpu_ram_efficient_loading: true
48
+ data:
49
+ num_workers: 16
50
+ train:
51
+ batch_size: 1
52
+ target: starvector.data.emojisvg.EmojiSVGDataset
53
+ params:
54
+ split: train
55
+ dataset_name: starvector/svg-emoji
56
+ im_size: 384
57
+ num_samples: -1
58
+ transforms: false
59
+ image_processor: siglip_384
60
+ test:
61
+ batch_size: 1
62
+ target: starvector.data.emojisvg.EmojiSVGDataset
63
+ params:
64
+ split: test
65
+ dataset_name: starvector/svg-emoji
66
+ im_size: 384
67
+ num_samples: 128
68
+ transforms: false
69
+ image_processor: siglip_384
70
+ generation:
71
+ max_length: 10000
72
+ min_length: 10
73
+ num_beams: 3
74
+ temperature: 1.0
75
+ num_captions: 1
76
+ repetition_penalty: 1.0
77
+ length_penalty: 0.5
78
+ top_p: 0.95
79
+ use_nucleus_sampling: true
80
+ im_size: 384
81
+ dpi: 2
82
+ scale: 300
83
+ metrics:
84
+ L2: true
85
+ Masked-L2: false
86
+ LPIPS: true
87
+ SSIM: true
88
+ FID: false
89
+ FID_clip: false
90
+ CLIPScore: false
91
+ CountTokenLength: true
92
+ ratio_post_processed: false
93
+ ratio_non_compiling: false
94
+ DinoScore: true
configs/models/starvector-8b/im2svg-fonts-simple.yaml ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ project:
2
+ project: starvector-8b-im2svg
3
+ use_wandb: false
4
+ entity: joanrod
5
+ copy_code: false
6
+ model:
7
+ max_length: 16000
8
+ model_name: starvector/starvector-8b-im2svg
9
+ starcoder_model_name: bigcode/starcoder2-7b
10
+ pretrained: true
11
+ image_encoder_type: siglip_384
12
+ use_flash_attn: true
13
+ adapter_norm: layer_norm
14
+ init_type: normal
15
+ dropout: 0.1
16
+ task: im2svg
17
+ transformer_layer_cls: Starcoder2DecoderLayer # fsdp specific
18
+ use_cache: false
19
+ training:
20
+ save_model_epochs: 1
21
+ checkpointing_steps: 500
22
+ checkpoints_total_limit: 5
23
+ model_precision: bf16
24
+ resume_from_checkpoint: false
25
+ continue_training: false
26
+ n_epochs: 4
27
+ lr: 0.00001
28
+ gradient_accumulation_steps: 4
29
+ lr_scheduler: cosine
30
+ lr_warmup_steps: 10
31
+ adam_beta1: 0.95
32
+ adam_beta2: 0.999
33
+ adam_weight_decay: 1.0e-06
34
+ adam_epsilon: 1e-08
35
+ optimizer: adamw
36
+ use_gradient_checkpointing: true
37
+ train_image_encoder: true
38
+ train_LLM: true
39
+ fsdp:
40
+ enable: true # TODO: set this reasonably, i.e., false only if you want to use DDP or have PyTorch < 2.1
41
+ cpu_offload: false
42
+ sharding_strategy: hsdp
43
+ backward_prefetch: BACKWARD_PRE
44
+ use_orig_params: true
45
+ sync_module_states: true
46
+ forward_prefetch: false
47
+ cpu_ram_efficient_loading: true
48
+ data:
49
+ num_workers: 16
50
+ train:
51
+ batch_size: 1
52
+ target: starvector.data.fontsvg.FontSVGDataset
53
+ params:
54
+ split: train
55
+ dataset_name: starvector/svg-fonts-simple
56
+ im_size: 384
57
+ num_samples: -1
58
+ transforms: false
59
+ image_processor: siglip_384
60
+ test:
61
+ batch_size: 4
62
+ target: starvector.data.fontsvg.FontSVGDataset
63
+ params:
64
+ split: test
65
+ dataset_name: starvector/svg-fonts-simple
66
+ im_size: 384
67
+ num_samples: 128
68
+ transforms: false
69
+ image_processor: siglip_384
70
+ generation:
71
+ max_length: 10000
72
+ min_length: 10
73
+ num_beams: 3
74
+ temperature: 1.0
75
+ num_captions: 1
76
+ repetition_penalty: 1.0
77
+ length_penalty: 0.5
78
+ top_p: 0.95
79
+ use_nucleus_sampling: true
80
+ im_size: 384
81
+ dpi: 2
82
+ scale: 300
83
+ metrics:
84
+ L2: true
85
+ Masked-L2: false
86
+ LPIPS: true
87
+ SSIM: true
88
+ FID: false
89
+ FID_clip: false
90
+ CLIPScore: false
91
+ CountTokenLength: true
92
+ ratio_post_processed: false
93
+ ratio_non_compiling: false
94
+ DinoScore: true
configs/models/starvector-8b/im2svg-fonts.yaml ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ project:
2
+ project: starvector-8b-im2svg
3
+ use_wandb: false
4
+ entity: joanrod
5
+ copy_code: false
6
+ model:
7
+ max_length: 16000
8
+ model_name: starvector/starvector-8b-im2svg
9
+ starcoder_model_name: bigcode/starcoder2-7b
10
+ pretrained: true
11
+ image_encoder_type: siglip_384
12
+ use_flash_attn: true
13
+ adapter_norm: layer_norm
14
+ init_type: normal
15
+ dropout: 0.1
16
+ task: im2svg
17
+ transformer_layer_cls: Starcoder2DecoderLayer # fsdp specific
18
+ use_cache: false
19
+ training:
20
+ save_model_epochs: 1
21
+ checkpointing_steps: 500
22
+ checkpoints_total_limit: 5
23
+ model_precision: bf16
24
+ resume_from_checkpoint: false
25
+ continue_training: false
26
+ n_epochs: 4
27
+ lr: 0.00001
28
+ gradient_accumulation_steps: 4
29
+ lr_scheduler: cosine
30
+ lr_warmup_steps: 10
31
+ adam_beta1: 0.95
32
+ adam_beta2: 0.999
33
+ adam_weight_decay: 1.0e-06
34
+ adam_epsilon: 1e-08
35
+ optimizer: adamw
36
+ use_gradient_checkpointing: true
37
+ train_image_encoder: true
38
+ train_LLM: true
39
+ fsdp:
40
+ enable: true # TODO: set this reasonably, i.e., false only if you want to use DDP or have PyTorch < 2.1
41
+ cpu_offload: false
42
+ sharding_strategy: hsdp
43
+ backward_prefetch: BACKWARD_PRE
44
+ use_orig_params: true
45
+ sync_module_states: true
46
+ forward_prefetch: false
47
+ cpu_ram_efficient_loading: true
48
+ data:
49
+ num_workers: 16
50
+ train:
51
+ batch_size: 1
52
+ target: starvector.data.fontsvg.FontSVGDataset
53
+ params:
54
+ split: train
55
+ dataset_name: starvector/svg-fonts
56
+ im_size: 384
57
+ num_samples: -1
58
+ transforms: false
59
+ image_processor: siglip_384
60
+ test:
61
+ batch_size: 4
62
+ target: starvector.data.fontsvg.FontSVGDataset
63
+ params:
64
+ split: test
65
+ dataset_name: starvector/svg-fonts
66
+ im_size: 384
67
+ num_samples: 128
68
+ transforms: false
69
+ image_processor: siglip_384
70
+ generation:
71
+ max_length: 10000
72
+ min_length: 10
73
+ num_beams: 3
74
+ temperature: 1.0
75
+ num_captions: 1
76
+ repetition_penalty: 1.0
77
+ length_penalty: 0.5
78
+ top_p: 0.95
79
+ use_nucleus_sampling: true
80
+ im_size: 384
81
+ dpi: 2
82
+ scale: 300
83
+ metrics:
84
+ L2: true
85
+ Masked-L2: false
86
+ LPIPS: true
87
+ SSIM: true
88
+ FID: false
89
+ FID_clip: false
90
+ CLIPScore: false
91
+ CountTokenLength: true
92
+ ratio_post_processed: false
93
+ ratio_non_compiling: false
94
+ DinoScore: true
configs/models/starvector-8b/im2svg-icons.yaml ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ project:
2
+ project: starvector-8b-im2svg
3
+ use_wandb: false
4
+ entity: joanrod
5
+ copy_code: false
6
+ model:
7
+ max_length: 16000
8
+ model_name: starvector/starvector-8b-im2svg
9
+ starcoder_model_name: bigcode/starcoder2-7b
10
+ pretrained: true
11
+ image_encoder_type: siglip_384
12
+ use_flash_attn: true
13
+ adapter_norm: layer_norm
14
+ init_type: normal
15
+ dropout: 0.1
16
+ task: im2svg
17
+ transformer_layer_cls: Starcoder2DecoderLayer # fsdp specific
18
+ use_cache: false
19
+ training:
20
+ save_model_epochs: 1
21
+ checkpointing_steps: 500
22
+ checkpoints_total_limit: 5
23
+ model_precision: bf16
24
+ resume_from_checkpoint: false
25
+ continue_training: false
26
+ n_epochs: 4
27
+ lr: 0.00001
28
+ gradient_accumulation_steps: 4
29
+ lr_scheduler: cosine
30
+ lr_warmup_steps: 10
31
+ adam_beta1: 0.95
32
+ adam_beta2: 0.999
33
+ adam_weight_decay: 1.0e-06
34
+ adam_epsilon: 1e-08
35
+ optimizer: adamw
36
+ use_gradient_checkpointing: true
37
+ train_image_encoder: true
38
+ train_LLM: true
39
+ fsdp:
40
+ enable: true # TODO: set this reasonably, i.e., false only if you want to use DDP or have PyTorch < 2.1
41
+ cpu_offload: false
42
+ sharding_strategy: hsdp
43
+ backward_prefetch: BACKWARD_PRE
44
+ use_orig_params: true
45
+ sync_module_states: true
46
+ forward_prefetch: false
47
+ cpu_ram_efficient_loading: true
48
+ data:
49
+ num_workers: 16
50
+ train:
51
+ batch_size: 1
52
+ target: starvector.data.iconsvg.SVGIconsDataset
53
+ params:
54
+ split: train
55
+ dataset_name: starvector/svg-icons
56
+ im_size: 384
57
+ num_samples: -1
58
+ transforms: false
59
+ image_processor: siglip_384
60
+ test:
61
+ batch_size: 1
62
+ target: starvector.data.iconsvg.SVGIconsDataset
63
+ params:
64
+ split: test
65
+ dataset_name: starvector/svg-icons
66
+ im_size: 384
67
+ num_samples: 128
68
+ transforms: false
69
+ image_processor: siglip_384
70
+ generation:
71
+ max_length: 10000
72
+ min_length: 10
73
+ num_beams: 3
74
+ temperature: 1.0
75
+ num_captions: 1
76
+ repetition_penalty: 1.0
77
+ length_penalty: 0.5
78
+ top_p: 0.95
79
+ use_nucleus_sampling: true
80
+ im_size: 384
81
+ dpi: 2
82
+ scale: 300
83
+ metrics:
84
+ L2: true
85
+ Masked-L2: false
86
+ LPIPS: true
87
+ SSIM: true
88
+ FID: false
89
+ FID_clip: false
90
+ CLIPScore: false
91
+ CountTokenLength: true
92
+ ratio_post_processed: false
93
+ ratio_non_compiling: false
94
+ DinoScore: true
configs/models/starvector-8b/im2svg-stack.yaml ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ project:
2
+ project: starvector-8b-im2svg
3
+ use_wandb: false
4
+ entity: joanrod
5
+ copy_code: false
6
+ model:
7
+ max_length: 16000
8
+ model_name: null
9
+ starcoder_model_name: bigcode/starcoder2-7b
10
+ pretrained: true
11
+ image_encoder_type: siglip_384
12
+ use_flash_attn: true
13
+ adapter_norm: layer_norm
14
+ init_type: normal
15
+ dropout: 0.1
16
+ task: im2svg
17
+ transformer_layer_cls: Starcoder2DecoderLayer # fsdp specific
18
+ use_cache: false
19
+ training:
20
+ save_model_epochs: 1
21
+ checkpointing_steps: 500
22
+ checkpoints_total_limit: 5
23
+ model_precision: bf16
24
+ resume_from_checkpoint: false
25
+ continue_training: false
26
+ n_epochs: 4
27
+ lr: 0.00001
28
+ gradient_accumulation_steps: 4
29
+ lr_scheduler: cosine
30
+ lr_warmup_steps: 10
31
+ adam_beta1: 0.95
32
+ adam_beta2: 0.999
33
+ adam_weight_decay: 1.0e-06
34
+ adam_epsilon: 1e-08
35
+ optimizer: adamw
36
+ use_gradient_checkpointing: true
37
+ train_image_encoder: true
38
+ train_LLM: true
39
+ fsdp:
40
+ enable: true # TODO: set this reasonably, i.e., false only if you want to use DDP or have PyTorch < 2.1
41
+ cpu_offload: false
42
+ sharding_strategy: hsdp
43
+ backward_prefetch: BACKWARD_PRE
44
+ use_orig_params: true
45
+ sync_module_states: true
46
+ forward_prefetch: false
47
+ cpu_ram_efficient_loading: true
48
+ data:
49
+ num_workers: 16
50
+ train:
51
+ batch_size: 1
52
+ target: starvector.data.stacksvg.SVGStackDataset
53
+ params:
54
+ split: train
55
+ dataset_name: starvector/svg-stack
56
+ im_size: 384
57
+ num_samples: -1
58
+ transforms: false
59
+ select_dataset_name: false
60
+ image_processor: siglip_384
61
+ test:
62
+ batch_size: 2
63
+ target: starvector.data.stacksvg.SVGStackDataset
64
+ params:
65
+ split: test
66
+ dataset_name: starvector/svg-stack
67
+ im_size: 384
68
+ num_samples: 64
69
+ transforms: false
70
+ select_dataset_name: false
71
+ image_processor: siglip_384
72
+ generation:
73
+ max_length: 10000
74
+ min_length: 10
75
+ num_beams: 3
76
+ temperature: 1.0
77
+ num_captions: 1
78
+ repetition_penalty: 1.0
79
+ length_penalty: 0.5
80
+ top_p: 0.95
81
+ use_nucleus_sampling: true
82
+ im_size: 384
83
+ dpi: 2
84
+ scale: 300
85
+ metrics:
86
+ L2: true
87
+ Masked-L2: false
88
+ LPIPS: true
89
+ SSIM: true
90
+ FID: false
91
+ FID_clip: false
92
+ CLIPScore: false
93
+ CountTokenLength: true
94
+ ratio_post_processed: false
95
+ ratio_non_compiling: false
96
+ DinoScore: true
configs/models/starvector-8b/text2svg-figr.yaml ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ project:
2
+ project: starvector-8b-text2svg
3
+ use_wandb: false
4
+ entity: joanrod
5
+ copy_code: false
6
+ model:
7
+ max_length: 16000
8
+ model_name: starvector/starvector-8b-im2svg
9
+ starcoder_model_name: bigcode/starcoder2-7b
10
+ pretrained: true
11
+ image_encoder_type: siglip_384
12
+ use_flash_attn: true
13
+ adapter_norm: layer_norm
14
+ init_type: normal
15
+ dropout: 0.1
16
+ task: text2svg
17
+ transformer_layer_cls: Starcoder2DecoderLayer # fsdp specific
18
+ use_cache: false
19
+ training:
20
+ save_model_epochs: 1
21
+ checkpointing_steps: 500
22
+ checkpoints_total_limit: 5
23
+ model_precision: bf16
24
+ resume_from_checkpoint: false
25
+ continue_training: false
26
+ n_epochs: 10
27
+ lr: 0.00001
28
+ gradient_accumulation_steps: 4
29
+ lr_scheduler: cosine
30
+ lr_warmup_steps: 10
31
+ adam_beta1: 0.95
32
+ adam_beta2: 0.999
33
+ adam_weight_decay: 1.0e-06
34
+ adam_epsilon: 1e-08
35
+ optimizer: adamw
36
+ use_gradient_checkpointing: true
37
+ train_image_encoder: true
38
+ train_LLM: true
39
+ fsdp:
40
+ enable: true # TODO: set this reasonably, i.e., false only if you want to use DDP or have PyTorch < 2.1
41
+ cpu_offload: false
42
+ sharding_strategy: hsdp
43
+ backward_prefetch: BACKWARD_PRE
44
+ use_orig_params: true
45
+ sync_module_states: true
46
+ forward_prefetch: false
47
+ cpu_ram_efficient_loading: true
48
+ data:
49
+ num_workers: 16
50
+ train:
51
+ batch_size: 4
52
+ target: starvector.data.stacksvg.SVGStackDataset
53
+ params:
54
+ split: train
55
+ dataset_name: starvector/FIGR-SVG
56
+ im_size: 384
57
+ num_samples: -1
58
+ transforms: false
59
+ select_dataset_name: false
60
+ image_processor: siglip_384
61
+ test:
62
+ batch_size: 4
63
+ target: starvector.data.stacksvg.SVGStackDataset
64
+ params:
65
+ split: test
66
+ dataset_name: starvector/FIGR-SVG
67
+ im_size: 384
68
+ num_samples: 64
69
+ transforms: false
70
+ select_dataset_name: false
71
+ image_processor: siglip_384
72
+ generation:
73
+ max_length: 10000
74
+ min_length: 10
75
+ num_beams: 3
76
+ temperature: 1.0
77
+ num_captions: 1
78
+ repetition_penalty: 1.0
79
+ length_penalty: 0.5
80
+ top_p: 0.95
81
+ use_nucleus_sampling: true
82
+ im_size: 384
83
+ dpi: 2
84
+ scale: 300
85
+ metrics:
86
+ L2: false
87
+ Masked-L2: false
88
+ LPIPS: false
89
+ SSIM: false
90
+ FID: false
91
+ FID_clip: false
92
+ CLIPScore: true
93
+ CountTokenLength: true
94
+ ratio_post_processed: false
95
+ ratio_non_compiling: false
96
+ DinoScore: false
configs/models/starvector-8b/text2svg-stack.yaml ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ project:
2
+ project: starvector-8b-text2svg
3
+ use_wandb: false
4
+ entity: joanrod
5
+ copy_code: false
6
+ model:
7
+ max_length: 16000
8
+ model_name: starvector/starvector-8b-im2svg
9
+ starcoder_model_name: bigcode/starcoder2-7b
10
+ pretrained: true
11
+ image_encoder_type: siglip_384
12
+ use_flash_attn: true
13
+ adapter_norm: layer_norm
14
+ init_type: normal
15
+ dropout: 0.1
16
+ task: text2svg
17
+ transformer_layer_cls: Starcoder2DecoderLayer # fsdp specific
18
+ use_cache: false
19
+ training:
20
+ save_model_epochs: 1
21
+ checkpointing_steps: 500
22
+ checkpoints_total_limit: 5
23
+ model_precision: bf16
24
+ resume_from_checkpoint: false
25
+ continue_training: false
26
+ n_epochs: 4
27
+ lr: 0.00001
28
+ gradient_accumulation_steps: 4
29
+ lr_scheduler: cosine
30
+ lr_warmup_steps: 10
31
+ adam_beta1: 0.95
32
+ adam_beta2: 0.999
33
+ adam_weight_decay: 1.0e-06
34
+ adam_epsilon: 1e-08
35
+ optimizer: adamw
36
+ use_gradient_checkpointing: true
37
+ train_image_encoder: true
38
+ train_LLM: true
39
+ fsdp:
40
+ enable: true # TODO: set this reasonably, i.e., false only if you want to use DDP or have PyTorch < 2.1
41
+ cpu_offload: false
42
+ sharding_strategy: hsdp
43
+ backward_prefetch: BACKWARD_PRE
44
+ use_orig_params: true
45
+ sync_module_states: true
46
+ forward_prefetch: false
47
+ cpu_ram_efficient_loading: true
48
+ data:
49
+ num_workers: 16
50
+ train:
51
+ batch_size: 4
52
+ target: starvector.data.stacksvg.SVGStackDataset
53
+ params:
54
+ split: train
55
+ dataset_name: starvector/text2svg-stack
56
+ im_size: 384
57
+ num_samples: -1
58
+ transforms: false
59
+ select_dataset_name: false
60
+ image_processor: siglip_384
61
+ test:
62
+ batch_size: 4
63
+ target: starvector.data.stacksvg.SVGStackDataset
64
+ params:
65
+ split: test
66
+ dataset_name: starvector/text2svg-stack
67
+ im_size: 384
68
+ num_samples: 64
69
+ transforms: false
70
+ select_dataset_name: false
71
+ image_processor: siglip_384
72
+ generation:
73
+ max_length: 10000
74
+ min_length: 10
75
+ num_beams: 3
76
+ temperature: 1.0
77
+ num_captions: 1
78
+ repetition_penalty: 1.0
79
+ length_penalty: 0.5
80
+ top_p: 0.95
81
+ use_nucleus_sampling: true
82
+ im_size: 384
83
+ dpi: 2
84
+ scale: 300
85
+ metrics:
86
+ L2: false
87
+ Masked-L2: false
88
+ LPIPS: false
89
+ SSIM: false
90
+ FID: false
91
+ FID_clip: false
92
+ CLIPScore: true
93
+ CountTokenLength: true
94
+ ratio_post_processed: false
95
+ ratio_non_compiling: false
96
+ DinoScore: false
controller.log ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 2025-03-23 15:00:44 | INFO | controller | args: Namespace(host='0.0.0.0', port=10000, dispatch_method='shortest_queue')
2
+ 2025-03-23 15:00:44 | INFO | controller | Init controller
3
+ 2025-03-23 15:00:45 | ERROR | stderr | INFO: Started server process [48368]
4
+ 2025-03-23 15:00:45 | ERROR | stderr | INFO: Waiting for application startup.
5
+ 2025-03-23 15:00:45 | ERROR | stderr | INFO: Application startup complete.
6
+ 2025-03-23 15:00:45 | ERROR | stderr | INFO: Uvicorn running on http://0.0.0.0:10000 (Press CTRL+C to quit)
7
+ 2025-03-23 15:01:04 | INFO | controller | Register a new worker: http://localhost:40000
8
+ 2025-03-23 15:01:04 | INFO | controller | Register done: http://localhost:40000, {'model_names': ['/home/agent_h/data/starvector-1b-im2svg'], 'speed': 1, 'queue_length': 0}
9
+ 2025-03-23 15:01:04 | INFO | stdout | INFO: 127.0.0.1:51486 - "POST /register_worker HTTP/1.1" 200 OK
10
+ 2025-03-23 15:01:19 | INFO | controller | Receive heart beat. http://localhost:40000
11
+ 2025-03-23 15:01:19 | INFO | stdout | INFO: 127.0.0.1:51523 - "POST /receive_heart_beat HTTP/1.1" 200 OK
12
+ 2025-03-23 15:01:34 | INFO | controller | Receive heart beat. http://localhost:40000
13
+ 2025-03-23 15:01:34 | INFO | stdout | INFO: 127.0.0.1:51562 - "POST /receive_heart_beat HTTP/1.1" 200 OK
14
+ 2025-03-23 15:01:49 | INFO | controller | Receive heart beat. http://localhost:40000
15
+ 2025-03-23 15:01:49 | INFO | stdout | INFO: 127.0.0.1:51607 - "POST /receive_heart_beat HTTP/1.1" 200 OK
16
+ 2025-03-23 15:02:04 | INFO | controller | Receive heart beat. http://localhost:40000
17
+ 2025-03-23 15:02:04 | INFO | stdout | INFO: 127.0.0.1:51648 - "POST /receive_heart_beat HTTP/1.1" 200 OK
18
+ 2025-03-23 15:02:19 | INFO | controller | Receive heart beat. http://localhost:40000
19
+ 2025-03-23 15:02:19 | INFO | stdout | INFO: 127.0.0.1:51683 - "POST /receive_heart_beat HTTP/1.1" 200 OK
20
+ 2025-03-23 15:02:34 | INFO | controller | Receive heart beat. http://localhost:40000
21
+ 2025-03-23 15:02:34 | INFO | stdout | INFO: 127.0.0.1:51729 - "POST /receive_heart_beat HTTP/1.1" 200 OK
22
+ 2025-03-23 15:02:55 | ERROR | stderr | INFO: Shutting down
23
+ 2025-03-23 15:02:55 | ERROR | stderr | INFO: Waiting for application shutdown.
24
+ 2025-03-23 15:02:55 | ERROR | stderr | INFO: Application shutdown complete.
25
+ 2025-03-23 15:02:55 | ERROR | stderr | INFO: Finished server process [48368]
26
+ 2025-03-23 15:04:32 | INFO | controller | args: Namespace(host='0.0.0.0', port=10000, dispatch_method='shortest_queue')
27
+ 2025-03-23 15:04:32 | INFO | controller | Init controller
28
+ 2025-03-23 15:04:32 | ERROR | stderr | INFO: Started server process [50695]
29
+ 2025-03-23 15:04:32 | ERROR | stderr | INFO: Waiting for application startup.
30
+ 2025-03-23 15:04:32 | ERROR | stderr | INFO: Application startup complete.
31
+ 2025-03-23 15:04:32 | ERROR | stderr | INFO: Uvicorn running on http://0.0.0.0:10000 (Press CTRL+C to quit)
model_worker_ad9563.log ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 2025-03-23 15:01:04 | INFO | model_worker | args: Namespace(host='0.0.0.0', port=40000, worker_address='http://localhost:40000', controller_address='http://localhost:10000', model_name='/home/agent_h/data/starvector-1b-im2svg', multi_modal=False, limit_model_concurrency=5, stream_interval=1, no_register=False, openai_api_key='EMPTY', vllm_base_url='http://localhost:8000')
2
+ 2025-03-23 15:01:04 | INFO | model_worker | Loading the model /home/agent_h/data/starvector-1b-im2svg on worker ad9563 ...
3
+ 2025-03-23 15:01:04 | INFO | model_worker | Register to controller
4
+ 2025-03-23 15:01:04 | ERROR | stderr | INFO: Started server process [48407]
5
+ 2025-03-23 15:01:04 | ERROR | stderr | INFO: Waiting for application startup.
6
+ 2025-03-23 15:01:04 | ERROR | stderr | INFO: Application startup complete.
7
+ 2025-03-23 15:01:04 | ERROR | stderr | INFO: Uvicorn running on http://0.0.0.0:40000 (Press CTRL+C to quit)
8
+ 2025-03-23 15:01:19 | INFO | model_worker | Send heart beat. Models: ['/home/agent_h/data/starvector-1b-im2svg']. Semaphore: None. global_counter: 0
9
+ 2025-03-23 15:01:34 | INFO | model_worker | Send heart beat. Models: ['/home/agent_h/data/starvector-1b-im2svg']. Semaphore: None. global_counter: 0
10
+ 2025-03-23 15:01:49 | INFO | model_worker | Send heart beat. Models: ['/home/agent_h/data/starvector-1b-im2svg']. Semaphore: None. global_counter: 0
11
+ 2025-03-23 15:02:04 | INFO | model_worker | Send heart beat. Models: ['/home/agent_h/data/starvector-1b-im2svg']. Semaphore: None. global_counter: 0
12
+ 2025-03-23 15:02:19 | INFO | model_worker | Send heart beat. Models: ['/home/agent_h/data/starvector-1b-im2svg']. Semaphore: None. global_counter: 0
13
+ 2025-03-23 15:02:34 | INFO | model_worker | Send heart beat. Models: ['/home/agent_h/data/starvector-1b-im2svg']. Semaphore: None. global_counter: 0
14
+ 2025-03-23 15:02:45 | ERROR | stderr | INFO: Shutting down
15
+ 2025-03-23 15:02:45 | ERROR | stderr | INFO: Waiting for application shutdown.
16
+ 2025-03-23 15:02:45 | ERROR | stderr | INFO: Application shutdown complete.
17
+ 2025-03-23 15:02:45 | ERROR | stderr | INFO: Finished server process [48407]
models/modeling_starvector.py ADDED
@@ -0,0 +1,224 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ This module defines a self-contained StarVector model with support for remote code loading.
3
+ """
4
+
5
+ import os
6
+ import torch
7
+ import torch.nn as nn
8
+ from transformers import PreTrainedModel, PretrainedConfig
9
+ from typing import Optional, Union, List
10
+ from abc import ABC, abstractmethod
11
+
12
+ # Import components - these will be included in the HF repo
13
+ from .starvector.image_encoder import ImageEncoder
14
+ from .starvector.adapter import Adapter
15
+
16
+ # === Model Configuration ===
17
+
18
+ class StarVectorConfig(PretrainedConfig):
19
+ model_type = "starvector"
20
+
21
+ def __init__(
22
+ self,
23
+ starcoder_model_name: str = "bigcode/starcoderbase-1b",
24
+ image_encoder_type: str = "clip",
25
+ adapter_norm: str = "layer_norm",
26
+ image_size: int = 224,
27
+ max_length: int = 8192,
28
+ max_length_train: int = 8192,
29
+ use_flash_attn: bool = True,
30
+ use_cache: bool = True,
31
+ num_attention_heads: int = 16,
32
+ num_hidden_layers: int = 24,
33
+ vocab_size: int = 49152,
34
+ hidden_size: int = 2048,
35
+ num_kv_heads: int = 4,
36
+ torch_dtype: str = "bfloat16",
37
+ **kwargs,
38
+ ):
39
+ # Initialize the parent config first
40
+ super().__init__(**kwargs)
41
+ self.starcoder_model_name = starcoder_model_name
42
+ self.image_encoder_type = image_encoder_type
43
+ self.adapter_norm = adapter_norm
44
+ self.image_size = image_size
45
+ self.max_length = max_length
46
+ self.max_length_train = max_length_train
47
+ self.use_flash_attn = use_flash_attn
48
+ self.use_cache = use_cache
49
+ self.num_attention_heads = num_attention_heads
50
+ self.num_hidden_layers = num_hidden_layers
51
+ self.vocab_size = vocab_size
52
+ self.hidden_size = hidden_size
53
+ self.num_kv_heads = num_kv_heads
54
+ self.torch_dtype = torch_dtype
55
+
56
+ # === Base Model Classes ===
57
+
58
+ class StarVectorBase(nn.Module, ABC):
59
+ def __init__(self, config, **kwargs):
60
+ super().__init__()
61
+ self.task = kwargs.get('task', 'im2svg')
62
+ self.model_precision = kwargs.get('model_precision', config.torch_dtype)
63
+
64
+ # Instantiate the SVG transformer using the abstract method.
65
+ self.svg_transformer = self._get_svg_transformer(config, **kwargs)
66
+
67
+ if self.use_image_encoder():
68
+ self.image_encoder = ImageEncoder(config, **kwargs)
69
+ self.image_projection = self.get_adapter(config, **kwargs).to(dtype=self.model_precision)
70
+ else:
71
+ self.query_length = 0
72
+
73
+ self.max_length = config.max_length_train - getattr(self, "query_length", 0) - 4
74
+ self.train_image_encoder = kwargs.get('train_image_encoder', False)
75
+ self.train_LLM = kwargs.get('train_LLM', False)
76
+
77
+ self._freeze_parameters(self.train_image_encoder, self.train_LLM)
78
+
79
+ @abstractmethod
80
+ def _get_svg_transformer(self, config, **kwargs):
81
+ """Get SVG transformer model - implementation differs between versions"""
82
+ pass
83
+
84
+ def _freeze_parameters(self, train_image_encoder, train_LLM):
85
+ if self.use_image_encoder():
86
+ for _, param in self.image_encoder.named_parameters():
87
+ param.requires_grad = train_image_encoder
88
+ for _, param in self.image_projection.named_parameters():
89
+ param.requires_grad = train_image_encoder
90
+ for _, param in self.svg_transformer.transformer.named_parameters():
91
+ param.requires_grad = train_LLM
92
+
93
+ def use_image_encoder(self):
94
+ return self.task == 'im2svg'
95
+
96
+ def get_adapter(self, config, **kwargs):
97
+ # Determine hidden size and query length based on the image encoder type.
98
+ if config.image_encoder_type == 'clip':
99
+ hidden_size = self.image_encoder.num_features
100
+ self.query_length = 257
101
+ elif config.image_encoder_type == 'vqgan':
102
+ hidden_size = 256
103
+ self.query_length = 196
104
+ else:
105
+ hidden_size = 256 # default fallback
106
+ self.query_length = 200
107
+ llm_hidden_size = config.hidden_size # assuming the transformer hidden size
108
+ return Adapter(hidden_size, llm_hidden_size, adapter_norm=config.adapter_norm, query_length=self.query_length, dropout_prob=kwargs.get('dropout', 0.1))
109
+
110
+ def forward(self, batch):
111
+ # Simplified forward pass where we assume batch has an "image" key.
112
+ image = batch["image"]
113
+ if self.use_image_encoder():
114
+ embedded_image = self.image_encoder(image)
115
+ conditioning_embeds = self.image_projection(embedded_image)
116
+ # For demo purposes, we generate dummy input embeddings (replace with your logic)
117
+ inputs_embeds = self.svg_transformer.transformer.wte(
118
+ torch.randint(0, self.svg_transformer.transformer.wte.num_embeddings, (image.size(0), self.max_length))
119
+ )
120
+ else:
121
+ inputs_embeds = self.svg_transformer.transformer.wte(
122
+ torch.randint(0, self.svg_transformer.transformer.wte.num_embeddings, (image.size(0), self.max_length))
123
+ )
124
+ return inputs_embeds # Dummy return
125
+
126
+ def generate_im2svg(self, batch, **kwargs):
127
+ # Prepare generation inputs (dummy implementation)
128
+ image = batch["image"]
129
+ if self.use_image_encoder():
130
+ embedded_image = self.image_encoder(image)
131
+ conditioning_embeds = self.image_projection(embedded_image)
132
+ else:
133
+ conditioning_embeds = torch.zeros((image.size(0), 10, 1), device=image.device)
134
+ generation_output = self.svg_transformer.transformer.generate(inputs_embeds=conditioning_embeds, max_length=kwargs.get('max_length', 30))
135
+ raw_svg = self.svg_transformer.tokenizer.batch_decode(generation_output, skip_special_tokens=True)
136
+ return raw_svg
137
+
138
+ @abstractmethod
139
+ def _get_embeddings(self, input_ids):
140
+ """Get embeddings from input ids - implementation differs between v1 and v2"""
141
+ pass
142
+
143
+ @abstractmethod
144
+ def _get_svg_text(self, svg_list):
145
+ """Get SVG text with appropriate end tokens - implementation differs between v1 and v2"""
146
+ pass
147
+
148
+ # V1 implementation: Delegates transformer creation to the external LLM file.
149
+ class StarVectorStarCoder(StarVectorBase):
150
+ def __init__(self, config, **kwargs):
151
+ super().__init__(config, **kwargs)
152
+
153
+ def _get_svg_transformer(self, config, **kwargs):
154
+ from starvector.model.llm.starcoder import StarCoderModel # V1: use StarCoderModel from external file
155
+ return StarCoderModel(config, **kwargs)
156
+
157
+ def _get_embeddings(self, input_ids):
158
+ """V1-specific embedding method"""
159
+ # This follows the implementation in starvector/model/models/starvector_v1.py.
160
+ return self.svg_transformer.transformer.transformer.wte(input_ids)
161
+
162
+ def _get_svg_text(self, svg_list):
163
+ """V1-specific SVG text preparation"""
164
+ return [t + self.svg_transformer.tokenizer.eos_token for t in svg_list]
165
+
166
+ # V2 implementation: Delegates transformer creation to the external V2 LLM file.
167
+ class StarVectorStarCoder2(StarVectorBase):
168
+ def __init__(self, config, **kwargs):
169
+ super().__init__(config, **kwargs)
170
+
171
+ def _get_svg_transformer(self, config, **kwargs):
172
+ from starvector.model.llm.starcoder2 import StarCoderModel # V2: use external StarCoderModel from starcoder2.py
173
+ return StarCoderModel(config, **kwargs)
174
+
175
+ def _get_embeddings(self, input_ids):
176
+ """V2-specific embedding method"""
177
+ return self.svg_transformer.transformer.model.embed_tokens(input_ids)
178
+
179
+ def _get_svg_text(self, svg_list):
180
+ """V2-specific SVG text preparation"""
181
+ return [t + self.svg_transformer.svg_end_token + self.svg_transformer.tokenizer.eos_token for t in svg_list]
182
+
183
+ def _get_im2svg_specific_kwargs(self, kwargs):
184
+ """V2-specific generation kwargs"""
185
+ return {
186
+ 'eos_token_id': self.svg_transformer.svg_end_token_id,
187
+ }
188
+
189
+ def _get_text2svg_specific_kwargs(self, kwargs):
190
+ """V2-specific text2svg generation kwargs"""
191
+ return {
192
+ 'eos_token_id': self.svg_transformer.tokenizer.eos_token_id,
193
+ }
194
+
195
+ # === Main Model Class for Hugging Face ===
196
+
197
+ class StarVectorForCausalLM(PreTrainedModel):
198
+ config_class = StarVectorConfig
199
+ _no_split_modules = []
200
+
201
+ def __init__(self, config, **kwargs):
202
+ super().__init__(config)
203
+ # Choose V2 if the model name indicates starcoder2; otherwise use V1.
204
+ if "starcoder2" in config.starcoder_model_name.lower():
205
+ self.model = StarVectorStarCoder2(config=config, **kwargs)
206
+ else:
207
+ self.model = StarVectorStarCoder(config=config, **kwargs)
208
+
209
+ def forward(self, batch):
210
+ return self.model(batch)
211
+
212
+ def generate_im2svg(self, batch, **kwargs):
213
+ return self.model.generate_im2svg(batch, **kwargs)
214
+
215
+ def generate_im2text(self, batch, **kwargs):
216
+ return self.model.generate_im2text(batch, **kwargs)
217
+
218
+ def process_images(self, images):
219
+ return self.model.image_encoder.process_images(images)
220
+
221
+ # === Registration for Autonomous Loading ===
222
+
223
+ StarVectorConfig.register_for_auto_class()
224
+ StarVectorForCausalLM.register_for_auto_class("AutoModelForCausalLM")
models/starvector/adapter.py ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch.nn as nn
2
+
3
+ class Adapter(nn.Module):
4
+ def __init__(self, in_features, out_features, adapter_norm="layer_norm", query_length=1, dropout_prob=0.1):
5
+ super().__init__()
6
+ self.fc = nn.Linear(in_features, out_features)
7
+ self.norm = nn.LayerNorm(out_features) if adapter_norm == "layer_norm" else None
8
+ self.dropout = nn.Dropout(dropout_prob)
9
+ self.query_length = query_length
10
+
11
+ def forward(self, x):
12
+ out = self.fc(x)
13
+ if self.norm is not None:
14
+ out = self.norm(out)
15
+ return self.dropout(out)