starnernj's picture
Update app.py
e9a38d8 verified
raw
history blame
2.65 kB
import os
# Disable CUDA visibility at the start
os.environ["CUDA_VISIBLE_DEVICES"] = "" # Prevents CUDA initialization
import spaces
import gradio as gr
from huggingface_hub import InferenceClient, login
import time
# Base model (LLaMA 3.1 8B) from Meta
base_model_name = "meta-llama/Llama-3.1-8B"
# Your fine-tuned LoRA adapter (uploaded to Hugging Face)
lora_model_name = "starnernj/Early-Christian-Church-Fathers-LLaMA-3.1-Fine-Tuned"
# Function to generate responses
def chatbot_response(user_input):
# Re-enable CUDA inside the function for accelerate to manage
os.environ["CUDA_VISIBLE_DEVICES"] = "0" # Adjust based on ZeroGPU setup
import traceback
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
from peft import PeftModel, PeftConfig
import bitsandbytes
from accelerate import Accelerator
import torch
# Check if CUDA is already initialized (for debugging)
if torch.cuda.is_initialized():
print("CUDA was already initialized before Accelerator!")
@spaces.GPU # Forces GPU allocation before execution
def force_gpu_allocation():
pass # Dummy function to trigger GPU setup
accelerator = Accelerator()
# Login because LLaMA 3.1 8B is a gated model
login(token=os.getenv("HuggingFaceFineGrainedReadToken"))
model = AutoModelForCausalLM.from_pretrained(
base_model_name,
device_map="cpu",
torch_dtype=torch.float32 # Avoid any GPU-related dtype defaults
)
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
# Load LoRA adapter
# model = PeftModel.from_pretrained(model, lora_model_name)
model = accelerator.prepare(model)
try:
inputs = tokenizer(user_input, return_tensors="pt").to(device)
outputs = model.generate(**inputs, max_length=200)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
except Exception as e:
error_message = f"AssertionError: {str(e)}\n{traceback.format_exc()}"
print(error_message) # ✅ Logs detailed error messages
return "An error occurred. Check the logs for details."
# Launch the Gradio chatbot
interface = gr.Interface(
fn=chatbot_response,
inputs=gr.Textbox(lines=2, placeholder="Ask me about the Christian Church Fathers..."),
outputs="text",
title="Early Christian Church Fathers Fine-Tuned LLaMA 3.1 8B with LoRA",
description="A chatbot using a fine-tuned LoRA adapter on LLaMA 3.1 8B, tuned on thousands of writings of the early Christian Church Fathers.",
)
interface.launch()