|
import spaces |
|
import gradio as gr |
|
from huggingface_hub import InferenceClient, login |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
from peft import PeftModel |
|
import os |
|
import torch |
|
import bitsandbytes |
|
|
|
print(f"Is CUDA available: {torch.cuda.is_available()}") |
|
print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}") |
|
|
|
""" |
|
|
|
# Base model (LLaMA 3.1 8B) from Meta |
|
base_model_name = "meta-llama/Llama-3.1-8B" |
|
|
|
# Your fine-tuned LoRA adapter (uploaded to Hugging Face) |
|
lora_model_name = "starnernj/Early-Christian-Church-Fathers-LLaMA-3.1-Fine-Tuned" |
|
|
|
# Login because LLaMA 3.1 8B is a gated model |
|
login(token=os.getenv("HuggingFaceFineGrainedReadToken")) |
|
|
|
# Load base model - can't do this on the free tier - not enough memory |
|
# model = AutoModelForCausalLM.from_pretrained(base_model_name) |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
base_model_name, |
|
load_in_4bit=True, # Reduces memory, but requires a GPU |
|
torch_dtype=torch.float16, |
|
device_map="auto" # Since I'm running on a free instance that doesn't have a GPU, I'll need to force CPU |
|
) |
|
|
|
# Load LoRA adapter |
|
model = PeftModel.from_pretrained(model, lora_model_name) |
|
|
|
# Load tokenizer |
|
tokenizer = AutoTokenizer.from_pretrained(base_model_name) |
|
|
|
# Function to generate responses |
|
def chatbot_response(user_input): |
|
inputs = tokenizer(user_input, return_tensors="pt") |
|
outputs = model.generate(**inputs, max_length=400) |
|
return tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|
|
# Launch the Gradio chatbot |
|
interface = gr.Interface( |
|
fn=chatbot_response, |
|
inputs=gr.Textbox(lines=2, placeholder="Ask me anything..."), |
|
outputs="text", |
|
title="Early Christian Church Fathers Fine-Tuned LLaMA 3.1 8B with LoRA", |
|
description="A chatbot using my fine-tuned LoRA adapter on LLaMA 3.1 8B, tuned on thousands of writings of the early Christian Church Fathers.", |
|
) |
|
|
|
interface.launch(share=True) |
|
""" |