File size: 2,723 Bytes
fbb2b4a
e9a38d8
a9b553f
87ed98d
9b0d920
c5f1959
9ee6131
 
 
 
 
fbb2b4a
 
4c9f7f3
c17a736
 
 
b1af9dd
15fc625
 
 
 
 
 
c53f6f7
 
fbb2b4a
 
c53f6f7
 
 
 
 
 
 
 
fbb2b4a
c53f6f7
 
 
 
 
fbb2b4a
 
c53f6f7
fbb2b4a
c53f6f7
fbb2b4a
 
c53f6f7
fbb2b4a
c53f6f7
fbb2b4a
 
c53f6f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e86dea
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
print("Beginning import")
import os
import spaces
import gradio as gr
from huggingface_hub import InferenceClient, login
import time
import traceback
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
from peft import PeftModel, PeftConfig
import bitsandbytes
import torch

print("Imports completed")

@spaces.GPU  # Forces GPU allocation before execution
def force_gpu_allocation():
    pass  # Dummy function to trigger GPU setup

# Base model (LLaMA 3.1 8B) from Meta
base_model_name = "meta-llama/Llama-3.1-8B"

# Your fine-tuned LoRA adapter (uploaded to Hugging Face)
lora_model_name = "starnernj/Early-Christian-Church-Fathers-LLaMA-3.1-Fine-Tuned"

# Login because LLaMA 3.1 8B is a gated model
login(token=os.getenv("HuggingFaceFineGrainedReadToken"))
print("Login to Huggin Face successful")

# Enable 4-bit Quantization with BitsAndBytes
quantization_config = BitsAndBytesConfig(
    load_in_4bit=True,  # βœ… Enables 4-bit quantization for memory efficiency
    bnb_4bit_compute_dtype=torch.float16,  # βœ… Uses float16 for performance
    bnb_4bit_use_double_quant=True,  # βœ… Optimizes quantization
    bnb_4bit_quant_type="nf4"  # βœ… Normalized Float-4 for better accuracy
)

print("Loading base model")
base_model = AutoModelForCausalLM.from_pretrained(
    base_model_name,
    quantization_config=quantization_config,
    device_map="auto"
)
print("Basemodel loaded successfully")

# Load tokenizer
print("Loading tokenizer")
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
print("Tokenizer loaded successfully")

# Load LoRA Adapter
print("Loading Peft LoRA adapter...")
model = PeftModel.from_pretrained(base_model, lora_model_name)
print("Peft LoRA model loaded successfully")

# Function to generate responses
def chatbot_response(user_input):
    try:
        inputs = tokenizer(user_input, return_tensors="pt").to("cuda")
        outputs = model.generate(**inputs, max_length=200)
        return tokenizer.decode(outputs[0], skip_special_tokens=True)
    except Exception as e:
        error_message = f"AssertionError: {str(e)}\n{traceback.format_exc()}"
        print(error_message)  # βœ… Logs detailed error messages
        return "An error occurred. Check the logs for details."


# Launch the Gradio chatbot
interface = gr.Interface(
    fn=chatbot_response,
    inputs=gr.Textbox(lines=2, placeholder="Ask me about the Christian Church Fathers..."),
    outputs="text",
    title="Early Christian Church Fathers Fine-Tuned LLaMA 3.1 8B with LoRA",
    description="A chatbot using a fine-tuned LoRA adapter on LLaMA 3.1 8B, tuned on thousands of writings of the early Christian Church Fathers.",
)

if __name__ == "__main__":
    interface.launch()