File size: 2,723 Bytes
fbb2b4a e9a38d8 a9b553f 87ed98d 9b0d920 c5f1959 9ee6131 fbb2b4a 4c9f7f3 c17a736 b1af9dd 15fc625 c53f6f7 fbb2b4a c53f6f7 fbb2b4a c53f6f7 fbb2b4a c53f6f7 fbb2b4a c53f6f7 fbb2b4a c53f6f7 fbb2b4a c53f6f7 fbb2b4a c53f6f7 1e86dea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
print("Beginning import")
import os
import spaces
import gradio as gr
from huggingface_hub import InferenceClient, login
import time
import traceback
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
from peft import PeftModel, PeftConfig
import bitsandbytes
import torch
print("Imports completed")
@spaces.GPU # Forces GPU allocation before execution
def force_gpu_allocation():
pass # Dummy function to trigger GPU setup
# Base model (LLaMA 3.1 8B) from Meta
base_model_name = "meta-llama/Llama-3.1-8B"
# Your fine-tuned LoRA adapter (uploaded to Hugging Face)
lora_model_name = "starnernj/Early-Christian-Church-Fathers-LLaMA-3.1-Fine-Tuned"
# Login because LLaMA 3.1 8B is a gated model
login(token=os.getenv("HuggingFaceFineGrainedReadToken"))
print("Login to Huggin Face successful")
# Enable 4-bit Quantization with BitsAndBytes
quantization_config = BitsAndBytesConfig(
load_in_4bit=True, # β
Enables 4-bit quantization for memory efficiency
bnb_4bit_compute_dtype=torch.float16, # β
Uses float16 for performance
bnb_4bit_use_double_quant=True, # β
Optimizes quantization
bnb_4bit_quant_type="nf4" # β
Normalized Float-4 for better accuracy
)
print("Loading base model")
base_model = AutoModelForCausalLM.from_pretrained(
base_model_name,
quantization_config=quantization_config,
device_map="auto"
)
print("Basemodel loaded successfully")
# Load tokenizer
print("Loading tokenizer")
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
print("Tokenizer loaded successfully")
# Load LoRA Adapter
print("Loading Peft LoRA adapter...")
model = PeftModel.from_pretrained(base_model, lora_model_name)
print("Peft LoRA model loaded successfully")
# Function to generate responses
def chatbot_response(user_input):
try:
inputs = tokenizer(user_input, return_tensors="pt").to("cuda")
outputs = model.generate(**inputs, max_length=200)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
except Exception as e:
error_message = f"AssertionError: {str(e)}\n{traceback.format_exc()}"
print(error_message) # β
Logs detailed error messages
return "An error occurred. Check the logs for details."
# Launch the Gradio chatbot
interface = gr.Interface(
fn=chatbot_response,
inputs=gr.Textbox(lines=2, placeholder="Ask me about the Christian Church Fathers..."),
outputs="text",
title="Early Christian Church Fathers Fine-Tuned LLaMA 3.1 8B with LoRA",
description="A chatbot using a fine-tuned LoRA adapter on LLaMA 3.1 8B, tuned on thousands of writings of the early Christian Church Fathers.",
)
if __name__ == "__main__":
interface.launch() |