Spaces:
Sleeping
Sleeping
| """This Streamlit app allows you to compare, from a given image, the results of different solutions: | |
| EasyOcr, PaddleOCR, MMOCR, Tesseract | |
| """ | |
| import streamlit as st | |
| import plotly.express as px | |
| import numpy as np | |
| import math | |
| import pandas as pd | |
| import cv2 | |
| from PIL import Image, ImageColor | |
| import PIL | |
| import easyocr | |
| from paddleocr import PaddleOCR | |
| from mmocr.utils.ocr import MMOCR | |
| import pytesseract | |
| from pytesseract import Output | |
| import os | |
| from mycolorpy import colorlist as mcp | |
| ################################################################################################### | |
| ## FUNCTIONS | |
| ################################################################################################### | |
| def convert_df(in_df): | |
| """Convert data frame function, used by download button | |
| Args: | |
| in_df (data frame): data frame to convert | |
| Returns: | |
| data frame: converted data frame | |
| """ | |
| # IMPORTANT: Cache the conversion to prevent computation on every rerun | |
| return in_df.to_csv().encode('utf-8') | |
| ### | |
| def easyocr_coord_convert(in_list_coord): | |
| """Convert easyocr coordinates to standard format used by others functions | |
| Args: | |
| in_list_coord (list of numbers): format [x_min, x_max, y_min, y_max] | |
| Returns: | |
| list of lists: format [ [x_min, y_min], [x_max, y_min], [x_max, y_max], [x_min, y_max] ] | |
| """ | |
| coord = in_list_coord | |
| return [[coord[0], coord[2]], [coord[1], coord[2]], [coord[1], coord[3]], [coord[0], coord[3]]] | |
| ### | |
| def initializations(): | |
| """Initializations for the app | |
| Returns: | |
| list of strings : list of OCR solutions names | |
| (['EasyOCR', 'PPOCR', 'MMOCR', 'Tesseract']) | |
| dict : names and indices of the OCR solutions | |
| ({'EasyOCR': 0, 'PPOCR': 1, 'MMOCR': 2, 'Tesseract': 3}) | |
| tuple : color of the detected boxes | |
| list of dicts : list of languages supported by each OCR solution | |
| list of int : columns for recognition details results | |
| dict : confidence color scale | |
| plotly figure : confidence color scale figure | |
| """ | |
| # the readers considered | |
| out_reader_type_list = ['EasyOCR', 'PPOCR', 'MMOCR', 'Tesseract'] | |
| out_reader_type_dict = {'EasyOCR': 0, 'PPOCR': 1, 'MMOCR': 2, 'Tesseract': 3} | |
| # Columns for recognition details results | |
| out_cols_size = [2] + [2,1]*(len(out_reader_type_list)-1) # Except Tesseract | |
| # Color of the detected boxes | |
| out_color = (0, 76, 153) | |
| # Dicts of laguages supported by each reader | |
| out_dict_lang_easyocr = {'Abaza': 'abq', 'Adyghe': 'ady', 'Afrikaans': 'af', 'Angika': 'ang', \ | |
| 'Arabic': 'ar', 'Assamese': 'as', 'Avar': 'ava', 'Azerbaijani': 'az', 'Belarusian': 'be', \ | |
| 'Bulgarian': 'bg', 'Bihari': 'bh', 'Bhojpuri': 'bho', 'Bengali': 'bn', 'Bosnian': 'bs', \ | |
| 'Simplified Chinese': 'ch_sim', 'Traditional Chinese': 'ch_tra', 'Chechen': 'che', \ | |
| 'Czech': 'cs', 'Welsh': 'cy', 'Danish': 'da', 'Dargwa': 'dar', 'German': 'de', \ | |
| 'English': 'en', 'Spanish': 'es', 'Estonian': 'et', 'Persian (Farsi)': 'fa', 'French': 'fr', \ | |
| 'Irish': 'ga', 'Goan Konkani': 'gom', 'Hindi': 'hi', 'Croatian': 'hr', 'Hungarian': 'hu', \ | |
| 'Indonesian': 'id', 'Ingush': 'inh', 'Icelandic': 'is', 'Italian': 'it', 'Japanese': 'ja', \ | |
| 'Kabardian': 'kbd', 'Kannada': 'kn', 'Korean': 'ko', 'Kurdish': 'ku', 'Latin': 'la', \ | |
| 'Lak': 'lbe', 'Lezghian': 'lez', 'Lithuanian': 'lt', 'Latvian': 'lv', 'Magahi': 'mah', \ | |
| 'Maithili': 'mai', 'Maori': 'mi', 'Mongolian': 'mn', 'Marathi': 'mr', 'Malay': 'ms', \ | |
| 'Maltese': 'mt', 'Nepali': 'ne', 'Newari': 'new', 'Dutch': 'nl', 'Norwegian': 'no', \ | |
| 'Occitan': 'oc', 'Pali': 'pi', 'Polish': 'pl', 'Portuguese': 'pt', 'Romanian': 'ro', \ | |
| 'Russian': 'ru', 'Serbian (cyrillic)': 'rs_cyrillic', 'Serbian (latin)': 'rs_latin', \ | |
| 'Nagpuri': 'sck', 'Slovak': 'sk', 'Slovenian': 'sl', 'Albanian': 'sq', 'Swedish': 'sv', \ | |
| 'Swahili': 'sw', 'Tamil': 'ta', 'Tabassaran': 'tab', 'Telugu': 'te', 'Thai': 'th', \ | |
| 'Tajik': 'tjk', 'Tagalog': 'tl', 'Turkish': 'tr', 'Uyghur': 'ug', 'Ukranian': 'uk', \ | |
| 'Urdu': 'ur', 'Uzbek': 'uz', 'Vietnamese': 'vi'} | |
| out_dict_lang_ppocr = {'Abaza': 'abq', 'Adyghe': 'ady', 'Afrikaans': 'af', 'Albanian': 'sq', \ | |
| 'Angika': 'ang', 'Arabic': 'ar', 'Avar': 'ava', 'Azerbaijani': 'az', 'Belarusian': 'be', \ | |
| 'Bhojpuri': 'bho','Bihari': 'bh','Bosnian': 'bs','Bulgarian': 'bg','Chinese & English': 'ch', \ | |
| 'Chinese Traditional': 'chinese_cht', 'Croatian': 'hr', 'Czech': 'cs', 'Danish': 'da', \ | |
| 'Dargwa': 'dar', 'Dutch': 'nl', 'English': 'en', 'Estonian': 'et', 'French': 'fr', \ | |
| 'German': 'german','Goan Konkani': 'gom','Hindi': 'hi','Hungarian': 'hu','Icelandic': 'is', \ | |
| 'Indonesian': 'id', 'Ingush': 'inh', 'Irish': 'ga', 'Italian': 'it', 'Japan': 'japan', \ | |
| 'Kabardian': 'kbd', 'Korean': 'korean', 'Kurdish': 'ku', 'Lak': 'lbe', 'Latvian': 'lv', \ | |
| 'Lezghian': 'lez', 'Lithuanian': 'lt', 'Magahi': 'mah', 'Maithili': 'mai', 'Malay': 'ms', \ | |
| 'Maltese': 'mt', 'Maori': 'mi', 'Marathi': 'mr', 'Mongolian': 'mn', 'Nagpur': 'sck', \ | |
| 'Nepali': 'ne', 'Newari': 'new', 'Norwegian': 'no', 'Occitan': 'oc', 'Persian': 'fa', \ | |
| 'Polish': 'pl', 'Portuguese': 'pt', 'Romanian': 'ro', 'Russia': 'ru', 'Saudi Arabia': 'sa', \ | |
| 'Serbian(cyrillic)': 'rs_cyrillic', 'Serbian(latin)': 'rs_latin', 'Slovak': 'sk', \ | |
| 'Slovenian': 'sl', 'Spanish': 'es', 'Swahili': 'sw', 'Swedish': 'sv', 'Tabassaran': 'tab', \ | |
| 'Tagalog': 'tl', 'Tamil': 'ta', 'Telugu': 'te', 'Turkish': 'tr', 'Ukranian': 'uk', \ | |
| 'Urdu': 'ur', 'Uyghur': 'ug', 'Uzbek': 'uz', 'Vietnamese': 'vi', 'Welsh': 'cy'} | |
| out_dict_lang_mmocr = {'English & Chinese': 'en'} | |
| out_dict_lang_tesseract = {'Afrikaans': 'afr','Albanian': 'sqi','Amharic': 'amh', \ | |
| 'Arabic': 'ara', 'Armenian': 'hye','Assamese': 'asm','Azerbaijani - Cyrilic': 'aze_cyrl', \ | |
| 'Azerbaijani': 'aze', 'Basque': 'eus','Belarusian': 'bel','Bengali': 'ben','Bosnian': 'bos', \ | |
| 'Breton': 'bre', 'Bulgarian': 'bul','Burmese': 'mya','Catalan; Valencian': 'cat', \ | |
| 'Cebuano': 'ceb', 'Central Khmer': 'khm','Cherokee': 'chr','Chinese - Simplified': 'chi_sim', \ | |
| 'Chinese - Traditional': 'chi_tra','Corsican': 'cos','Croatian': 'hrv','Czech': 'ces', \ | |
| 'Danish':'dan','Dutch; Flemish':'nld','Dzongkha':'dzo','English, Middle (1100-1500)':'enm', \ | |
| 'English': 'eng','Esperanto': 'epo','Estonian': 'est','Faroese': 'fao', \ | |
| 'Filipino (old - Tagalog)': 'fil','Finnish': 'fin','French, Middle (ca.1400-1600)': 'frm', \ | |
| 'French': 'fra','Galician': 'glg','Georgian - Old': 'kat_old','Georgian': 'kat', \ | |
| 'German - Fraktur': 'frk','German': 'deu','Greek, Modern (1453-)': 'ell','Gujarati': 'guj', \ | |
| 'Haitian; Haitian Creole': 'hat','Hebrew': 'heb','Hindi': 'hin','Hungarian': 'hun', \ | |
| 'Icelandic': 'isl','Indonesian': 'ind','Inuktitut': 'iku','Irish': 'gle', \ | |
| 'Italian - Old': 'ita_old','Italian': 'ita','Japanese': 'jpn','Javanese': 'jav', \ | |
| 'Kannada': 'kan','Kazakh': 'kaz','Kirghiz; Kyrgyz': 'kir','Korean (vertical)': 'kor_vert', \ | |
| 'Korean': 'kor','Kurdish (Arabic Script)': 'kur_ara','Lao': 'lao','Latin': 'lat', \ | |
| 'Latvian':'lav','Lithuanian':'lit','Luxembourgish':'ltz','Macedonian':'mkd','Malay':'msa', \ | |
| 'Malayalam': 'mal','Maltese': 'mlt','Maori': 'mri','Marathi': 'mar','Mongolian': 'mon', \ | |
| 'Nepali': 'nep','Norwegian': 'nor','Occitan (post 1500)': 'oci', \ | |
| 'Orientation and script detection module':'osd','Oriya':'ori','Panjabi; Punjabi':'pan', \ | |
| 'Persian':'fas','Polish':'pol','Portuguese':'por','Pushto; Pashto':'pus','Quechua':'que', \ | |
| 'Romanian; Moldavian; Moldovan': 'ron','Russian': 'rus','Sanskrit': 'san', \ | |
| 'Scottish Gaelic': 'gla','Serbian - Latin': 'srp_latn','Serbian': 'srp','Sindhi': 'snd', \ | |
| 'Sinhala; Sinhalese': 'sin','Slovak': 'slk','Slovenian': 'slv', \ | |
| 'Spanish; Castilian - Old': 'spa_old','Spanish; Castilian': 'spa','Sundanese': 'sun', \ | |
| 'Swahili': 'swa','Swedish': 'swe','Syriac': 'syr','Tajik': 'tgk','Tamil': 'tam', \ | |
| 'Tatar':'tat','Telugu':'tel','Thai':'tha','Tibetan':'bod','Tigrinya':'tir','Tonga':'ton', \ | |
| 'Turkish': 'tur','Uighur; Uyghur': 'uig','Ukrainian': 'ukr','Urdu': 'urd', \ | |
| 'Uzbek - Cyrilic': 'uzb_cyrl','Uzbek': 'uzb','Vietnamese': 'vie','Welsh': 'cym', \ | |
| 'Western Frisian': 'fry','Yiddish': 'yid','Yoruba': 'yor'} | |
| out_list_dict_lang = [out_dict_lang_easyocr, out_dict_lang_ppocr, out_dict_lang_mmocr, \ | |
| out_dict_lang_tesseract] | |
| # Initialization of detection form | |
| if 'columns_size' not in st.session_state: | |
| st.session_state.columns_size = [2] + [1 for x in out_reader_type_list[1:]] | |
| if 'column_width' not in st.session_state: | |
| st.session_state.column_width = [500] + [400 for x in out_reader_type_list[1:]] | |
| if 'columns_color' not in st.session_state: | |
| st.session_state.columns_color = ["rgb(228,26,28)"] + \ | |
| ["rgb(0,0,0)" for x in out_reader_type_list[1:]] | |
| # Confidence color scale | |
| out_list_confid = list(np.arange(0,101,1)) | |
| out_list_grad = mcp.gen_color_normalized(cmap="Greens",data_arr=np.array(out_list_confid)) | |
| out_dict_back_colors = {out_list_confid[i]: out_list_grad[i] \ | |
| for i in range(len(out_list_confid))} | |
| list_y = [1 for i in out_list_confid] | |
| df_confid = pd.DataFrame({'% confidence scale': out_list_confid, 'y': list_y}) | |
| out_fig = px.scatter(df_confid, x='% confidence scale', y='y', \ | |
| hover_data={'% confidence scale': True, 'y': False}, | |
| color=out_dict_back_colors.values(), range_y=[0.9,1.1], range_x=[0,100], | |
| color_discrete_map="identity",height=50,symbol='y',symbol_sequence=['square']) | |
| out_fig.update_xaxes(showticklabels=False) | |
| out_fig.update_yaxes(showticklabels=False, range=[0.1, 1.1], visible=False) | |
| out_fig.update_traces(marker_size=50) | |
| out_fig.update_layout(paper_bgcolor="white", margin=dict(b=0,r=0,t=0,l=0), xaxis_side="top", \ | |
| showlegend=False) | |
| return out_reader_type_list, out_reader_type_dict, out_color, out_list_dict_lang, \ | |
| out_cols_size, out_dict_back_colors, out_fig | |
| ### | |
| def init_easyocr(in_params): | |
| """Initialization of easyOCR reader | |
| Args: | |
| in_params (list): list with the language | |
| Returns: | |
| easyocr reader: the easyocr reader instance | |
| """ | |
| out_ocr = easyocr.Reader(in_params) | |
| return out_ocr | |
| ### | |
| def init_ppocr(in_params): | |
| """Initialization of PPOCR reader | |
| Args: | |
| in_params (dict): dict with parameters | |
| Returns: | |
| ppocr reader: the ppocr reader instance | |
| """ | |
| out_ocr = PaddleOCR(lang=in_params[0], **in_params[1]) | |
| return out_ocr | |
| ### | |
| def init_mmocr(in_params): | |
| """Initialization of MMOCR reader | |
| Args: | |
| in_params (dict): dict with parameters | |
| Returns: | |
| mmocr reader: the ppocr reader instance | |
| """ | |
| out_ocr = MMOCR(recog=None, **in_params[1]) | |
| return out_ocr | |
| ### | |
| def init_readers(in_list_params): | |
| """Initialization of the readers, and return them as list | |
| Args: | |
| in_list_params (list): list of dicts of parameters for each reader | |
| Returns: | |
| list: list of the reader's instances | |
| """ | |
| # Instantiations of the readers : | |
| # - EasyOCR | |
| with st.spinner("EasyOCR reader initialization in progress ..."): | |
| reader_easyocr = init_easyocr([in_list_params[0][0]]) | |
| # - PPOCR | |
| # Paddleocr | |
| with st.spinner("PPOCR reader initialization in progress ..."): | |
| reader_ppocr = init_ppocr(in_list_params[1]) | |
| # - MMOCR | |
| with st.spinner("MMOCR reader initialization in progress ..."): | |
| reader_mmocr = init_mmocr(in_list_params[2]) | |
| out_list_readers = [reader_easyocr, reader_ppocr, reader_mmocr] | |
| return out_list_readers | |
| ### | |
| def load_image(in_image_file): | |
| """Load input file and open it | |
| Args: | |
| in_image_file (string or Streamlit UploadedFile): image to consider | |
| Returns: | |
| string : locally saved image path | |
| PIL.Image : input file opened with Pillow | |
| matrix : input file opened with Opencv | |
| """ | |
| if isinstance(in_image_file, str): | |
| out_image_path = "img."+in_image_file.split('.')[-1] | |
| else: | |
| out_image_path = "img."+in_image_file.name.split('.')[-1] | |
| img = Image.open(in_image_file) | |
| img_saved = img.save(out_image_path) | |
| # Read image | |
| out_image_orig = Image.open(out_image_path) | |
| out_image_cv2 = cv2.cvtColor(cv2.imread(out_image_path), cv2.COLOR_BGR2RGB) | |
| return out_image_path, out_image_orig, out_image_cv2 | |
| ### | |
| def easyocr_detect(_in_reader, in_image_path, in_params): | |
| """Detection with EasyOCR | |
| Args: | |
| _in_reader (EasyOCR reader) : the previously initialized instance | |
| in_image_path (string ) : locally saved image path | |
| in_params (list) : list with the parameters for detection | |
| Returns: | |
| list : list of the boxes coordinates | |
| exception on error, string 'OK' otherwise | |
| """ | |
| try: | |
| dict_param = in_params[1] | |
| detection_result = _in_reader.detect(in_image_path, | |
| #width_ths=0.7, | |
| #mag_ratio=1.5 | |
| **dict_param | |
| ) | |
| easyocr_coordinates = detection_result[0][0] | |
| # The format of the coordinate is as follows: [x_min, x_max, y_min, y_max] | |
| # Format boxes coordinates for draw | |
| out_easyocr_boxes_coordinates = list(map(easyocr_coord_convert, easyocr_coordinates)) | |
| out_status = 'OK' | |
| except Exception as e: | |
| out_easyocr_boxes_coordinates = [] | |
| out_status = e | |
| return out_easyocr_boxes_coordinates, out_status | |
| ### | |
| def ppocr_detect(_in_reader, in_image_path): | |
| """Detection with PPOCR | |
| Args: | |
| _in_reader (PPOCR reader) : the previously initialized instance | |
| in_image_path (string ) : locally saved image path | |
| Returns: | |
| list : list of the boxes coordinates | |
| exception on error, string 'OK' otherwise | |
| """ | |
| # PPOCR detection method | |
| try: | |
| out_ppocr_boxes_coordinates = _in_reader.ocr(in_image_path, rec=False) | |
| out_status = 'OK' | |
| except Exception as e: | |
| out_ppocr_boxes_coordinates = [] | |
| out_status = e | |
| return out_ppocr_boxes_coordinates, out_status | |
| ### | |
| def mmocr_detect(_in_reader, in_image_path): | |
| """Detection with MMOCR | |
| Args: | |
| _in_reader (EasyORC reader) : the previously initialized instance | |
| in_image_path (string) : locally saved image path | |
| in_params (list) : list with the parameters | |
| Returns: | |
| list : list of the boxes coordinates | |
| exception on error, string 'OK' otherwise | |
| """ | |
| # MMOCR detection method | |
| out_mmocr_boxes_coordinates = [] | |
| try: | |
| det_result = _in_reader.readtext(in_image_path, details=True) | |
| bboxes_list = [res['boundary_result'] for res in det_result] | |
| for bboxes in bboxes_list: | |
| for bbox in bboxes: | |
| if len(bbox) > 9: | |
| min_x = min(bbox[0:-1:2]) | |
| min_y = min(bbox[1:-1:2]) | |
| max_x = max(bbox[0:-1:2]) | |
| max_y = max(bbox[1:-1:2]) | |
| #box = [min_x, min_y, max_x, min_y, max_x, max_y, min_x, max_y] | |
| else: | |
| min_x = min(bbox[0:-1:2]) | |
| min_y = min(bbox[1::2]) | |
| max_x = max(bbox[0:-1:2]) | |
| max_y = max(bbox[1::2]) | |
| box4 = [ [min_x, min_y], [max_x, min_y], [max_x, max_y], [min_x, max_y] ] | |
| out_mmocr_boxes_coordinates.append(box4) | |
| out_status = 'OK' | |
| except Exception as e: | |
| out_status = e | |
| return out_mmocr_boxes_coordinates, out_status | |
| ### | |
| def cropped_1box(in_box, in_img): | |
| """Construction of an cropped image corresponding to an area of the initial image | |
| Args: | |
| in_box (list) : box with coordinates | |
| in_img (matrix) : image | |
| Returns: | |
| matrix : cropped image | |
| """ | |
| box_ar = np.array(in_box).astype(np.int64) | |
| x_min = box_ar[:, 0].min() | |
| x_max = box_ar[:, 0].max() | |
| y_min = box_ar[:, 1].min() | |
| y_max = box_ar[:, 1].max() | |
| out_cropped = in_img[y_min:y_max, x_min:x_max] | |
| return out_cropped | |
| ### | |
| def tesserocr_detect(_in_img, in_params): | |
| """Detection with Tesseract | |
| Args: | |
| _in_img (PIL.Image) : image to consider | |
| in_params (list) : list with the parameters for detection | |
| Returns: | |
| list : list of the boxes coordinates | |
| exception on error, string 'OK' otherwise | |
| """ | |
| try: | |
| dict_param = in_params[1] | |
| df_res = pytesseract.image_to_data(_in_img, **dict_param, output_type=Output.DATAFRAME) | |
| df_res['box'] = df_res.apply(lambda d: [[d['left'], d['top']], \ | |
| [d['left'] + d['width'], d['top']], \ | |
| [d['left'] + d['width'], d['top'] + d['height']], \ | |
| [d['left'], d['top'] + d['height']], \ | |
| ], axis=1) | |
| out_tesserocr_boxes_coordinates = df_res[df_res.word_num > 0]['box'].to_list() | |
| out_status = 'OK' | |
| except Exception as e: | |
| out_tesserocr_boxes_coordinates = [] | |
| out_status = e | |
| return out_tesserocr_boxes_coordinates, out_status | |
| ### | |
| def process_detect(in_image_path, _in_list_images, _in_list_readers, in_list_params, in_color): | |
| """Detection process for each OCR solution | |
| Args: | |
| in_image_path (string) : locally saved image path | |
| _in_list_images (list) : list of original image | |
| _in_list_readers (list) : list with previously initialized reader's instances | |
| in_list_params (list) : list with dict parameters for each OCR solution | |
| in_color (tuple) : color for boxes around text | |
| Returns: | |
| list: list of detection results images | |
| list: list of boxes coordinates | |
| """ | |
| ## ------- EasyOCR Text detection | |
| with st.spinner('EasyOCR Text detection in progress ...'): | |
| easyocr_boxes_coordinates,easyocr_status = easyocr_detect(_in_list_readers[0], \ | |
| in_image_path, in_list_params[0]) | |
| # Visualization | |
| if easyocr_boxes_coordinates: | |
| easyocr_image_detect = draw_detected(_in_list_images[0], easyocr_boxes_coordinates, \ | |
| in_color, 'None', 3) | |
| else: | |
| easyocr_boxes_coordinates = easyocr_status | |
| ## | |
| ## ------- PPOCR Text detection | |
| with st.spinner('PPOCR Text detection in progress ...'): | |
| ppocr_boxes_coordinates, ppocr_status = ppocr_detect(_in_list_readers[1], in_image_path) | |
| # Visualization | |
| if ppocr_boxes_coordinates: | |
| ppocr_image_detect = draw_detected(_in_list_images[0], ppocr_boxes_coordinates, \ | |
| in_color, 'None', 7) | |
| else: | |
| ppocr_image_detect = ppocr_status | |
| ## | |
| ## ------- MMOCR Text detection | |
| with st.spinner('MMOCR Text detection in progress ...'): | |
| mmocr_boxes_coordinates, mmocr_status = mmocr_detect(_in_list_readers[2], in_image_path) | |
| # Visualization | |
| if mmocr_boxes_coordinates: | |
| mmocr_image_detect = draw_detected(_in_list_images[0], mmocr_boxes_coordinates, \ | |
| in_color, 'None', 7) | |
| else: | |
| mmocr_image_detect = mmocr_status | |
| ## | |
| ## ------- Tesseract Text detection | |
| with st.spinner('Tesseract Text detection in progress ...'): | |
| tesserocr_boxes_coordinates, tesserocr_status = tesserocr_detect(_in_list_images[0], \ | |
| in_list_params[3]) | |
| # Visualization | |
| if tesserocr_boxes_coordinates: | |
| tesserocr_image_detect = draw_detected(_in_list_images[0],tesserocr_boxes_coordinates,\ | |
| in_color, 'None', 7) | |
| else: | |
| tesserocr_image_detect = tesserocr_status | |
| ## | |
| # | |
| out_list_images = _in_list_images + [easyocr_image_detect, ppocr_image_detect, \ | |
| mmocr_image_detect, tesserocr_image_detect] | |
| out_list_coordinates = [easyocr_boxes_coordinates, ppocr_boxes_coordinates, \ | |
| mmocr_boxes_coordinates, tesserocr_boxes_coordinates] | |
| # | |
| return out_list_images, out_list_coordinates | |
| ### | |
| def draw_detected(in_image, in_boxes_coordinates, in_color, posit='None', in_thickness=4): | |
| """Draw boxes around detected text | |
| Args: | |
| in_image (PIL.Image) : original image | |
| in_boxes_coordinates (list) : boxes coordinates, from top to bottom and from left to right | |
| [ [ [x_min, y_min], [x_max, y_min], [x_max, y_max], [x_min, y_max] ], | |
| [ ... ] | |
| ] | |
| in_color (tuple) : color for boxes around text | |
| posit (str, optional) : position for text. Defaults to 'None'. | |
| in_thickness (int, optional): thickness of the box. Defaults to 4. | |
| Returns: | |
| PIL.Image : original image with detected areas | |
| """ | |
| work_img = in_image.copy() | |
| font = cv2.FONT_HERSHEY_SIMPLEX | |
| for ind_box, box in enumerate(in_boxes_coordinates): | |
| box = np.reshape(np.array(box), [-1, 1, 2]).astype(np.int64) | |
| work_img = cv2.polylines(np.array(work_img), [box], True, in_color, in_thickness) | |
| if posit != 'None': | |
| if posit == 'top_left': | |
| pos = tuple(box[0][0]) | |
| elif posit == 'top_right': | |
| pos = tuple(box[1][0]) | |
| work_img = cv2.putText(work_img, str(ind_box+1), pos, font, 5.5, color, \ | |
| in_thickness,cv2.LINE_AA) | |
| out_image_drawn = Image.fromarray(work_img) | |
| return out_image_drawn | |
| ### | |
| def get_cropped(in_boxes_coordinates, in_image_cv): | |
| """Construct list of cropped images corresponding of the input boxes coordinates list | |
| Args: | |
| in_boxes_coordinates (list) : list of boxes coordinates | |
| in_image_cv (matrix) : original image | |
| Returns: | |
| list : list with cropped images | |
| """ | |
| out_list_images = [] | |
| for box in in_boxes_coordinates: | |
| cropped = cropped_1box(box, in_image_cv) | |
| out_list_images.append(cropped) | |
| return out_list_images | |
| ### | |
| def process_recog(in_list_readers, in_image_cv, in_boxes_coordinates, in_list_dict_params): | |
| """Recognition process for each OCR solution | |
| Args: | |
| in_list_readers (list) : list with previously initialized reader's instances | |
| in_image_cv (matrix) : original image | |
| in_boxes_coordinates (list) : list of boxes coordinates | |
| in_list_dict_params (list) : list with dict parameters for each OCR solution | |
| Returns: | |
| data frame : results for each OCR solution, except Tesseract | |
| data frame : results for Tesseract | |
| list : status for each recognition (exception or 'OK') | |
| """ | |
| out_df_results = pd.DataFrame([]) | |
| list_text_easyocr = [] | |
| list_confidence_easyocr = [] | |
| list_text_ppocr = [] | |
| list_confidence_ppocr = [] | |
| list_text_mmocr = [] | |
| list_confidence_mmocr = [] | |
| # Create cropped images from detection | |
| list_cropped_images = get_cropped(in_boxes_coordinates, in_image_cv) | |
| # Recognize with EasyOCR | |
| with st.spinner('EasyOCR Text recognition in progress ...'): | |
| list_text_easyocr, list_confidence_easyocr, status_easyocr = \ | |
| easyocr_recog(list_cropped_images, in_list_readers[0], in_list_dict_params[0]) | |
| ## | |
| # Recognize with PPOCR | |
| with st.spinner('PPOCR Text recognition in progress ...'): | |
| list_text_ppocr, list_confidence_ppocr, status_ppocr = \ | |
| ppocr_recog(list_cropped_images, in_list_dict_params[1]) | |
| ## | |
| # Recognize with MMOCR | |
| with st.spinner('MMOCR Text recognition in progress ...'): | |
| list_text_mmocr, list_confidence_mmocr, status_mmocr = \ | |
| mmocr_recog(list_cropped_images, in_list_dict_params[2]) | |
| ## | |
| # Recognize with Tesseract | |
| with st.spinner('Tesseract Text recognition in progress ...'): | |
| out_df_results_tesseract, status_tesseract = \ | |
| tesserocr_recog(in_image_cv, in_list_dict_params[3], len(list_cropped_images)) | |
| ## | |
| # Create results data frame | |
| out_df_results = pd.DataFrame({'cropped_image': list_cropped_images, | |
| 'text_easyocr': list_text_easyocr, | |
| 'confidence_easyocr': list_confidence_easyocr, | |
| 'text_ppocr': list_text_ppocr, | |
| 'confidence_ppocr': list_confidence_ppocr, | |
| 'text_mmocr': list_text_mmocr, | |
| 'confidence_mmocr': list_confidence_mmocr | |
| } | |
| ) | |
| out_list_reco_status = [status_easyocr, status_ppocr, status_mmocr, status_tesseract] | |
| return out_df_results, out_df_results_tesseract, out_list_reco_status | |
| ### | |
| def easyocr_recog(in_list_images, _in_reader_easyocr, in_params): | |
| """Recognition with EasyOCR | |
| Args: | |
| in_list_images (list) : list of cropped images | |
| _in_reader_easyocr (EasyOCR reader) : the previously initialized instance | |
| in_params (dict) : parameters for recognition | |
| Returns: | |
| list : list of recognized text | |
| list : list of recognition confidence | |
| string/Exception : recognition status | |
| """ | |
| progress_bar = st.progress(0) | |
| out_list_text_easyocr = [] | |
| out_list_confidence_easyocr = [] | |
| ## ------- EasyOCR Text recognition | |
| try: | |
| step = 0*len(in_list_images) # first recognition process | |
| nb_steps = 4 * len(in_list_images) | |
| for ind_img, cropped in enumerate(in_list_images): | |
| result = _in_reader_easyocr.recognize(cropped, **in_params) | |
| try: | |
| out_list_text_easyocr.append(result[0][1]) | |
| out_list_confidence_easyocr.append(np.round(100*result[0][2], 1)) | |
| except: | |
| out_list_text_easyocr.append('Not recognize') | |
| out_list_confidence_easyocr.append(100.) | |
| progress_bar.progress((step+ind_img+1)/nb_steps) | |
| out_status = 'OK' | |
| except Exception as e: | |
| out_status = e | |
| progress_bar.empty() | |
| return out_list_text_easyocr, out_list_confidence_easyocr, out_status | |
| ### | |
| def ppocr_recog(in_list_images, in_params): | |
| """Recognition with PPOCR | |
| Args: | |
| in_list_images (list) : list of cropped images | |
| in_params (dict) : parameters for recognition | |
| Returns: | |
| list : list of recognized text | |
| list : list of recognition confidence | |
| string/Exception : recognition status | |
| """ | |
| ## ------- PPOCR Text recognition | |
| out_list_text_ppocr = [] | |
| out_list_confidence_ppocr = [] | |
| try: | |
| reader_ppocr = PaddleOCR(**in_params) | |
| step = 1*len(in_list_images) # second recognition process | |
| nb_steps = 4 * len(in_list_images) | |
| progress_bar = st.progress(step/nb_steps) | |
| for ind_img, cropped in enumerate(in_list_images): | |
| result = reader_ppocr.ocr(cropped, det=False, cls=False) | |
| try: | |
| out_list_text_ppocr.append(result[0][0]) | |
| out_list_confidence_ppocr.append(np.round(100*result[0][1], 1)) | |
| except: | |
| out_list_text_ppocr.append('Not recognize') | |
| out_list_confidence_ppocr.append(100.) | |
| progress_bar.progress((step+ind_img+1)/nb_steps) | |
| out_status = 'OK' | |
| except Exception as e: | |
| out_status = e | |
| progress_bar.empty() | |
| return out_list_text_ppocr, out_list_confidence_ppocr, out_status | |
| ### | |
| def mmocr_recog(in_list_images, in_params): | |
| """Recognition with MMOCR | |
| Args: | |
| in_list_images (list) : list of cropped images | |
| in_params (dict) : parameters for recognition | |
| Returns: | |
| list : list of recognized text | |
| list : list of recognition confidence | |
| string/Exception : recognition status | |
| """ | |
| ## ------- MMOCR Text recognition | |
| out_list_text_mmocr = [] | |
| out_list_confidence_mmocr = [] | |
| try: | |
| reader_mmocr = MMOCR(det=None, **in_params) | |
| step = 2*len(in_list_images) # third recognition process | |
| nb_steps = 4 * len(in_list_images) | |
| progress_bar = st.progress(step/nb_steps) | |
| for ind_img, cropped in enumerate(in_list_images): | |
| result = reader_mmocr.readtext(cropped, details=True) | |
| try: | |
| out_list_text_mmocr.append(result[0]['text']) | |
| out_list_confidence_mmocr.append(np.round(100* \ | |
| (np.array(result[0]['score']).mean()), 1)) | |
| except: | |
| out_list_text_mmocr.append('Not recognize') | |
| out_list_confidence_mmocr.append(100.) | |
| progress_bar.progress((step+ind_img+1)/nb_steps) | |
| out_status = 'OK' | |
| except Exception as e: | |
| out_status = e | |
| progress_bar.empty() | |
| return out_list_text_mmocr, out_list_confidence_mmocr, out_status | |
| ### | |
| def tesserocr_recog(in_img, in_params, in_nb_images): | |
| """Recognition with Tesseract | |
| Args: | |
| in_image_cv (matrix) : original image | |
| in_params (dict) : parameters for recognition | |
| in_nb_images : nb cropped images (used for progress bar) | |
| Returns: | |
| Pandas data frame : recognition results | |
| string/Exception : recognition status | |
| """ | |
| ## ------- Tesseract Text recognition | |
| step = 3*in_nb_images # fourth recognition process | |
| nb_steps = 4 * in_nb_images | |
| progress_bar = st.progress(step/nb_steps) | |
| try: | |
| out_df_result = pytesseract.image_to_data(in_img, **in_params,output_type=Output.DATAFRAME) | |
| out_df_result['box'] = out_df_result.apply(lambda d: [[d['left'], d['top']], \ | |
| [d['left'] + d['width'], d['top']], \ | |
| [d['left']+d['width'], d['top']+d['height']], \ | |
| [d['left'], d['top'] + d['height']], \ | |
| ], axis=1) | |
| out_df_result['cropped'] = out_df_result['box'].apply(lambda b: cropped_1box(b, in_img)) | |
| out_df_result = out_df_result[(out_df_result.word_num > 0) & (out_df_result.text != ' ')] \ | |
| .reset_index(drop=True) | |
| out_status = 'OK' | |
| except Exception as e: | |
| out_df_result = pd.DataFrame([]) | |
| out_status = e | |
| progress_bar.progress(1.) | |
| return out_df_result, out_status | |
| ### | |
| def draw_reco_images(in_image, in_boxes_coordinates, in_list_texts, in_list_confid, \ | |
| in_dict_back_colors, in_df_results_tesseract, in_reader_type_list, \ | |
| in_font_scale=3, in_conf_threshold=65): | |
| """Draw recognized text on original image, for each OCR solution used | |
| Args: | |
| in_image (matrix) : original image | |
| in_boxes_coordinates (list) : list of boxes coordinates | |
| in_list_texts (list): list of recognized text for each recognizer (except Tesseract) | |
| in_list_confid (list): list of recognition confidence for each recognizer (except Tesseract) | |
| in_df_results_tesseract (Pandas data frame): Tesseract recognition results | |
| in_font_scale (int, optional): text font scale. Defaults to 3. | |
| Returns: | |
| shows the results container | |
| """ | |
| img = in_image.copy() | |
| nb_readers = len(in_reader_type_list) | |
| list_reco_images = [img.copy() for i in range(nb_readers)] | |
| for num, box_ in enumerate(in_boxes_coordinates): | |
| box = np.array(box_).astype(np.int64) | |
| # For each box : draw the results of each recognizer | |
| for ind_r in range(nb_readers-1): | |
| confid = np.round(in_list_confid[ind_r][num], 0) | |
| rgb_color = ImageColor.getcolor(in_dict_back_colors[confid], "RGB") | |
| if confid < in_conf_threshold: | |
| text_color = (0, 0, 0) | |
| else: | |
| text_color = (255, 255, 255) | |
| list_reco_images[ind_r] = cv2.rectangle(list_reco_images[ind_r], \ | |
| (box[0][0], box[0][1]), \ | |
| (box[2][0], box[2][1]), rgb_color, -1) | |
| list_reco_images[ind_r] = cv2.putText(list_reco_images[ind_r], \ | |
| in_list_texts[ind_r][num], \ | |
| (box[0][0],int(np.round((box[0][1]+box[2][1])/2,0))), \ | |
| cv2.FONT_HERSHEY_DUPLEX, in_font_scale, text_color, 2) | |
| # Add Tesseract process | |
| if not in_df_results_tesseract.empty: | |
| ind_tessocr = nb_readers-1 | |
| for num, box_ in enumerate(in_df_results_tesseract['box'].to_list()): | |
| box = np.array(box_).astype(np.int64) | |
| confid = np.round(in_df_results_tesseract.iloc[num]['conf'], 0) | |
| rgb_color = ImageColor.getcolor(in_dict_back_colors[confid], "RGB") | |
| if confid < in_conf_threshold: | |
| text_color = (0, 0, 0) | |
| else: | |
| text_color = (255, 255, 255) | |
| list_reco_images[ind_tessocr] = \ | |
| cv2.rectangle(list_reco_images[ind_tessocr], (box[0][0], box[0][1]), \ | |
| (box[2][0], box[2][1]), rgb_color, -1) | |
| list_reco_images[ind_tessocr] = \ | |
| cv2.putText(list_reco_images[ind_tessocr], \ | |
| in_df_results_tesseract.iloc[num]['text'], \ | |
| (box[0][0],int(np.round((box[0][1]+box[2][1])/2,0))), \ | |
| cv2.FONT_HERSHEY_DUPLEX, in_font_scale, text_color, 2) | |
| with show_reco.container(): | |
| # Draw the results, 2 images per line | |
| reco_lines = math.ceil(len(in_reader_type_list) / 2) | |
| column_width = 500 | |
| for ind_lig in range(0, reco_lines+1, 2): | |
| cols = st.columns(2) | |
| for ind_col in range(2): | |
| ind = ind_lig + ind_col | |
| if ind <= len(in_reader_type_list): | |
| if in_reader_type_list[ind] == 'Tesseract': | |
| column_title = '<p style="font-size: 20px;color:rgb(0,0,0); \ | |
| ">Recognition with ' + in_reader_type_list[ind] + \ | |
| '<sp style="font-size: 17px"> (with its own detector) \ | |
| </sp></p>' | |
| else: | |
| column_title = '<p style="font-size: 20px;color:rgb(0,0,0); \ | |
| ">Recognition with ' + \ | |
| in_reader_type_list[ind]+ '</p>' | |
| cols[ind_col].markdown(column_title, unsafe_allow_html=True) | |
| if st.session_state.list_reco_status[ind] == 'OK': | |
| cols[ind_col].image(list_reco_images[ind], \ | |
| width=column_width, use_column_width=True) | |
| else: | |
| cols[ind_col].write(list_reco_status[ind], \ | |
| use_column_width=True) | |
| st.markdown(' 💡 Wrong font size? you can adjust it below:') | |
| ### | |
| def highlight(): | |
| """Draw recognized text on original image, for each OCR solution used | |
| Args: | |
| in_image (matrix) : original image | |
| in_boxes_coordinates (list) : list of boxes coordinates | |
| in_list_texts (list): list of recognized text for each recognizer (except Tesseract) | |
| in_list_confid (list): list of recognition confidence for each recognizer (except Tesseract) | |
| in_df_results_tesseract (Pandas data frame): Tesseract recognition results | |
| in_font_scale (int, optional): text font scale. Defaults to 3. | |
| Returns: | |
| shows the results container | |
| """ | |
| show_detect.empty() | |
| with show_detect.container(): | |
| columns_size = [1 for x in reader_type_list] | |
| column_width = [400 for x in reader_type_list] | |
| columns_color = ["rgb(0,0,0)" for x in reader_type_list] | |
| columns_size[reader_type_dict[st.session_state.detect_reader]] = 2 | |
| column_width[reader_type_dict[st.session_state.detect_reader]] = 500 | |
| columns_color[reader_type_dict[st.session_state.detect_reader]] = "rgb(228,26,28)" | |
| columns = st.columns(columns_size, ) #gap='medium') | |
| for ind_col, col in enumerate(columns): | |
| column_title = '<p style="font-size: 20px;color:'+columns_color[ind_col] + \ | |
| ';">Detection with ' + reader_type_list[ind_col]+ '</p>' | |
| col.markdown(column_title, unsafe_allow_html=True) | |
| if isinstance(list_images[ind_col+2], PIL.Image.Image): | |
| col.image(list_images[ind_col+2], width=column_width[ind_col], \ | |
| use_column_width=True) | |
| else: | |
| col.write(list_images[ind_col+2], use_column_width=True) | |
| st.session_state.columns_size = columns_size | |
| st.session_state.column_width = column_width | |
| st.session_state.columns_color = columns_color | |
| ### | |
| def get_demo(): | |
| """Get the demo files | |
| Returns: | |
| PIL.Image : input file opened with Pillow | |
| PIL.Image : input file opened with Pillow | |
| """ | |
| out_img_demo_1 = Image.open("img_demo_1.jpg") | |
| out_img_demo_2 = Image.open("img_demo_2.jpg") | |
| return out_img_demo_1, out_img_demo_2 | |
| ################################################################################################### | |
| ## MAIN | |
| ################################################################################################### | |
| ##----------- Initializations --------------------------------------------------------------------- | |
| #print("PID : ", os.getpid()) | |
| st.set_page_config(page_title='OCR Comparator', layout ="wide") | |
| st.markdown(f''' | |
| <style> | |
| section[data-testid="stSidebar"] .css-ng1t4o {{width: 14rem;}} | |
| section[data-testid="stSidebar"] .css-1d391kg {{width: 14rem;}} | |
| </style> | |
| ''',unsafe_allow_html=True) | |
| st.title("OCR solutions comparator") | |
| st.markdown("##### *EasyOCR, PPOCR, MMOCR, Tesseract*") | |
| #st.markdown("#### PID : " + str(os.getpid())) | |
| # Initializations | |
| with st.spinner("Initializations in progress ..."): | |
| reader_type_list, reader_type_dict, color, list_dict_lang, \ | |
| cols_size, dict_back_colors, fig_colorscale = initializations() | |
| img_demo_1, img_demo_2 = get_demo() | |
| ##----------- Choose language & image ------------------------------------------------------------- | |
| st.markdown("#### Choose languages for the text recognition:") | |
| lang_col = st.columns(4) | |
| easyocr_key_lang = lang_col[0].selectbox(reader_type_list[0]+" :", list_dict_lang[0].keys(), 26) | |
| easyocr_lang = list_dict_lang[0][easyocr_key_lang] | |
| ppocr_key_lang = lang_col[1].selectbox(reader_type_list[1]+" :", list_dict_lang[1].keys(), 22) | |
| ppocr_lang = list_dict_lang[1][ppocr_key_lang] | |
| mmocr_key_lang = lang_col[2].selectbox(reader_type_list[2]+" :", list_dict_lang[2].keys(), 0) | |
| mmocr_lang = list_dict_lang[2][mmocr_key_lang] | |
| tesserocr_key_lang = lang_col[3].selectbox(reader_type_list[3]+" :", list_dict_lang[3].keys(), 35) | |
| tesserocr_lang = list_dict_lang[3][tesserocr_key_lang] | |
| st.markdown("#### Choose picture:") | |
| cols_pict = st.columns([1, 1, 2, 2]) | |
| img_typ = cols_pict[0].radio("", ['Upload file', 'Take a picture', 'Use a demo file'], index=0) | |
| if img_typ == 'Upload file': | |
| image_file = cols_pict[2].file_uploader("Upload a file:", type=["png","jpg","jpeg"]) | |
| if img_typ == 'Take a picture': | |
| image_file = cols_pict[2].camera_input("Take a picture:") | |
| if img_typ == 'Use a demo file': | |
| cols_pict[1].markdown('###### Choose a demo file:') | |
| demo_used = cols_pict[1].radio('', ['File 1', 'File 2'], index=0) | |
| cols_pict[2].markdown('###### File 1') | |
| cols_pict[2].image(img_demo_1, use_column_width=True) | |
| cols_pict[3].markdown('###### File 2') | |
| cols_pict[3].image(img_demo_2, use_column_width=True) | |
| if demo_used == 'File 1': | |
| image_file = 'img_demo_1.jpg' | |
| else: | |
| image_file = 'img_demo_2.jpg' | |
| ##----------- Process input image ----------------------------------------------------------------- | |
| if image_file is not None: | |
| image_path, image_orig, image_cv2 = load_image(image_file) | |
| list_images = [image_orig, image_cv2] | |
| ##----------- Form with original image & hyperparameters for detectors ---------------------------- | |
| with st.form("form1"): | |
| col1, col2 = st.columns(2, ) #gap="medium") | |
| col1.markdown("##### Original image") | |
| col1.image(list_images[0], width=500, use_column_width=True) | |
| col2.markdown("##### Hyperparameters values for detection") | |
| with col2.expander("Choose detection hyperparameters for " + reader_type_list[0], \ | |
| expanded=False): | |
| t0_min_size = st.slider("min_size", 1, 20, 10, step=1, \ | |
| help="min_size (int, default = 10) - Filter text box smaller than \ | |
| minimum value in pixel") | |
| t0_text_threshold = st.slider("text_threshold", 0.1, 1., 0.7, step=0.1, \ | |
| help="text_threshold (float, default = 0.7) - Text confidence threshold") | |
| t0_low_text = st.slider("low_text", 0.1, 1., 0.4, step=0.1, \ | |
| help="low_text (float, default = 0.4) - Text low-bound score") | |
| t0_link_threshold = st.slider("link_threshold", 0.1, 1., 0.4, step=0.1, \ | |
| help="link_threshold (float, default = 0.4) - Link confidence threshold") | |
| t0_canvas_size = st.slider("canvas_size", 2000, 5000, 2560, step=10, \ | |
| help='''canvas_size (int, default = 2560) \n | |
| Maximum e size. Image bigger than this value will be resized down''') | |
| t0_mag_ratio = st.slider("mag_ratio", 0.1, 5., 1., step=0.1, \ | |
| help="mag_ratio (float, default = 1) - Image magnification ratio") | |
| t0_slope_ths = st.slider("slope_ths", 0.01, 1., 0.1, step=0.01, \ | |
| help='''slope_ths (float, default = 0.1) - Maximum slope \ | |
| (delta y/delta x) to considered merging. \n | |
| Low valuans tiled boxes will not be merged.''') | |
| t0_ycenter_ths = st.slider("ycenter_ths", 0.1, 1., 0.5, step=0.1, \ | |
| help='''ycenter_ths (float, default = 0.5) - Maximum shift in y direction. \n | |
| Boxes wiifferent level should not be merged.''') | |
| t0_height_ths = st.slider("height_ths", 0.1, 1., 0.5, step=0.1, \ | |
| help='''height_ths (float, default = 0.5) - Maximum different in box height. \n | |
| Boxes wiery different text size should not be merged.''') | |
| t0_width_ths = st.slider("width_ths", 0.1, 1., 0.5, step=0.1, \ | |
| help="width_ths (float, default = 0.5) - Maximum horizontal \ | |
| distance to merge boxes.") | |
| t0_add_margin = st.slider("add_margin", 0.1, 1., 0.1, step=0.1, \ | |
| help='''add_margin (float, default = 0.1) - \ | |
| Extend bounding boxes in all direction by certain value. \n | |
| This is rtant for language with complex script (E.g. Thai).''') | |
| t0_optimal_num_chars = st.slider("optimal_num_chars", None, 100, None, step=10, \ | |
| help="optimal_num_chars (int, default = None) - If specified, bounding boxes \ | |
| with estimated number of characters near this value are returned first.") | |
| with col2.expander("Choose detection hyperparameters for " + reader_type_list[1], \ | |
| expanded=False): | |
| t1_det_algorithm = st.selectbox('det_algorithm', ['DB'], \ | |
| help='Type of detection algorithm selected. (default = DB)') | |
| t1_det_max_side_len = st.slider('det_max_side_len', 500, 2000, 960, step=10, \ | |
| help='''The maximum size of the long side of the image. (default = 960)\n | |
| Limit thximum image height and width.\n | |
| When theg side exceeds this value, the long side will be resized to this size, and the short side \ | |
| will be ed proportionally.''') | |
| t1_det_db_thresh = st.slider('det_db_thresh', 0.1, 1., 0.3, step=0.1, \ | |
| help='''Binarization threshold value of DB output map. (default = 0.3) \n | |
| Used to er the binarized image of DB prediction, setting 0.-0.3 has no obvious effect on the result.''') | |
| t1_det_db_box_thresh = st.slider('det_db_box_thresh', 0.1, 1., 0.6, step=0.1, \ | |
| help='''The threshold value of the DB output box. (default = 0.6) \n | |
| DB post-essing filter box threshold, if there is a missing box detected, it can be reduced as appropriate. \n | |
| Boxes sclower than this value will be discard.''') | |
| t1_det_db_unclip_ratio = st.slider('det_db_unclip_ratio', 1., 3.0, 1.6, step=0.1, \ | |
| help='''The expanded ratio of DB output box. (default = 1.6) \n | |
| Indicatee compactness of the text box, the smaller the value, the closer the text box to the text.''') | |
| t1_det_east_score_thresh = st.slider('det_east_cover_thresh', 0.1, 1., 0.8, step=0.1, \ | |
| help="Binarization threshold value of EAST output map. (default = 0.8)") | |
| t1_det_east_cover_thresh = st.slider('det_east_cover_thresh', 0.1, 1., 0.1, step=0.1, \ | |
| help='''The threshold value of the EAST output box. (default = 0.1) \n | |
| Boxes sclower than this value will be discarded.''') | |
| t1_det_east_nms_thresh = st.slider('det_east_nms_thresh', 0.1, 1., 0.2, step=0.1, \ | |
| help="The NMS threshold value of EAST model output box. (default = 0.2)") | |
| t1_det_db_score_mode = st.selectbox('det_db_score_mode', ['fast', 'slow'], \ | |
| help='''slow: use polygon box to calculate bbox score, fast: use rectangle box \ | |
| to calculate. (default = fast) \n | |
| Use rectlar box to calculate faster, and polygonal box more accurate for curved text area.''') | |
| with col2.expander("Choose detection hyperparameters for " + reader_type_list[2], \ | |
| expanded=False): | |
| t2_det = st.selectbox('det', ['DB_r18','DB_r50','DBPP_r50','DRRG','FCE_IC15', \ | |
| 'FCE_CTW_DCNv2','MaskRCNN_CTW','MaskRCNN_IC15', \ | |
| 'MaskRCNN_IC17', 'PANet_CTW','PANet_IC15','PS_CTW',\ | |
| 'PS_IC15','Tesseract','TextSnake'], 10, \ | |
| help='Text detection algorithm. (default = PANet_IC15)') | |
| st.write("###### *More about text detection models* 👉 \ | |
| [here](https://mmocr.readthedocs.io/en/latest/textdet_models.html)") | |
| t2_merge_xdist = st.slider('merge_xdist', 1, 50, 20, step=1, \ | |
| help='The maximum x-axis distance to merge boxes. (defaut=20)') | |
| with col2.expander("Choose detection hyperparameters for " + reader_type_list[3], \ | |
| expanded=False): | |
| t3_psm = st.selectbox('Page segmentation mode (psm)', \ | |
| [' - Default', \ | |
| ' 4 Assume a single column of text of variable sizes', \ | |
| ' 5 Assume a single uniform block of vertically aligned text', \ | |
| ' 6 Assume a single uniform block of text', \ | |
| ' 7 Treat the image as a single text line', \ | |
| ' 8 Treat the image as a single word', \ | |
| ' 9 Treat the image as a single word in a circle', \ | |
| '10 Treat the image as a single character', \ | |
| '11 Sparse text. Find as much text as possible in no \ | |
| particular order', \ | |
| '13 Raw line. Treat the image as a single text line, \ | |
| bypassing hacks that are Tesseract-specific']) | |
| t3_oem = st.selectbox('OCR engine mode', ['0 Legacy engine only', \ | |
| '1 Neural nets LSTM engine only', \ | |
| '2 Legacy + LSTM engines', \ | |
| '3 Default, based on what is available'], 3) | |
| t3_whitelist = st.text_input('Limit tesseract to recognize only this characters :', \ | |
| placeholder='Limit tesseract to recognize only this characters', \ | |
| help='Example for numbers only : 0123456789') | |
| submit_detect = st.form_submit_button("Launch detection") | |
| ##----------- Process text detection -------------------------------------------------------------- | |
| if submit_detect: | |
| # Process text detection | |
| if t0_optimal_num_chars == 0: | |
| t0_optimal_num_chars = None | |
| # Construct the config Tesseract parameter | |
| t3_config = '' | |
| psm = t3_psm[:2] | |
| if psm != ' -': | |
| t3_config += '--psm ' + psm.strip() | |
| oem = t3_oem[:1] | |
| if oem != '3': | |
| t3_config += ' --oem ' + oem | |
| if t3_whitelist != '': | |
| t3_config += ' -c tessedit_char_whitelist=' + t3_whitelist | |
| list_params_det = \ | |
| [[easyocr_lang, \ | |
| {'min_size': t0_min_size, 'text_threshold': t0_text_threshold, \ | |
| 'low_text': t0_low_text, 'link_threshold': t0_link_threshold, \ | |
| 'canvas_size': t0_canvas_size, 'mag_ratio': t0_mag_ratio, \ | |
| 'slope_ths': t0_slope_ths, 'ycenter_ths': t0_ycenter_ths, \ | |
| 'height_ths': t0_height_ths, 'width_ths': t0_width_ths, \ | |
| 'add_margin': t0_add_margin, 'optimal_num_chars': t0_optimal_num_chars \ | |
| }], \ | |
| [ppocr_lang, \ | |
| {'det_algorithm': t1_det_algorithm, 'det_max_side_len': t1_det_max_side_len, \ | |
| 'det_db_thresh': t1_det_db_thresh, 'det_db_box_thresh': t1_det_db_box_thresh, \ | |
| 'det_db_unclip_ratio': t1_det_db_unclip_ratio, \ | |
| 'det_east_score_thresh': t1_det_east_score_thresh, \ | |
| 'det_east_cover_thresh': t1_det_east_cover_thresh, \ | |
| 'det_east_nms_thresh': t1_det_east_nms_thresh, \ | |
| 'det_db_score_mode': t1_det_db_score_mode}], | |
| [mmocr_lang, {'det': t2_det, 'merge_xdist': t2_merge_xdist}], | |
| [tesserocr_lang, {'lang': tesserocr_lang, 'config': t3_config}] | |
| ] | |
| show_info1 = st.empty() | |
| show_info1.info("Readers initializations in progress (it may take a while) ...") | |
| list_readers = init_readers(list_params_det) | |
| show_info1.info("Text detection in progress ...") | |
| list_images, list_coordinates = process_detect(image_path, list_images, list_readers, \ | |
| list_params_det, color) | |
| show_info1.empty() | |
| if 'list_readers' not in st.session_state: | |
| st.session_state.list_readers = list_readers | |
| if 'list_coordinates' not in st.session_state: | |
| st.session_state.list_coordinates = list_coordinates | |
| if 'list_images' not in st.session_state: | |
| st.session_state.list_images = list_images | |
| if 'list_params_det' not in st.session_state: | |
| st.session_state.list_params_det = list_params_det | |
| if 'columns_size' not in st.session_state: | |
| st.session_state.columns_size = [2] + [1 for x in reader_type_list[1:]] | |
| if 'column_width' not in st.session_state: | |
| st.session_state.column_width = [500] + [400 for x in reader_type_list[1:]] | |
| if 'columns_color' not in st.session_state: | |
| st.session_state.columns_color = ["rgb(228,26,28)"] + \ | |
| ["rgb(0,0,0)" for x in reader_type_list[1:]] | |
| if 'list_coordinates' in st.session_state: | |
| list_coordinates = st.session_state.list_coordinates | |
| list_images = st.session_state.list_images | |
| list_readers = st.session_state.list_readers | |
| list_params_det = st.session_state.list_params_det | |
| ##----------- Text detection results -------------------------------------------------------------- | |
| st.subheader("Text detection") | |
| show_detect = st.empty() | |
| list_ok_detect = [] | |
| with show_detect.container(): | |
| columns = st.columns(st.session_state.columns_size, ) #gap='medium') | |
| for no_col, col in enumerate(columns): | |
| column_title = '<p style="font-size: 20px;color:' + \ | |
| st.session_state.columns_color[no_col] + \ | |
| ';">Detection with ' + reader_type_list[no_col]+ '</p>' | |
| col.markdown(column_title, unsafe_allow_html=True) | |
| if isinstance(list_images[no_col+2], PIL.Image.Image): | |
| col.image(list_images[no_col+2], width=st.session_state.column_width[no_col], \ | |
| use_column_width=True) | |
| list_ok_detect.append(reader_type_list[no_col]) | |
| else: | |
| col.write(list_images[no_col+2], use_column_width=True) | |
| st.subheader("Text recognition") | |
| st.markdown("##### Using detection performed above by:") | |
| st.radio('Choose the detecter:', list_ok_detect, key='detect_reader', \ | |
| horizontal=True, on_change=highlight) | |
| ##----------- Form with hyperparameters for recognition ----------------------- | |
| st.markdown("##### Hyperparameters values for recognition:") | |
| with st.form("form2"): | |
| with st.expander("Choose recognition hyperparameters for " + reader_type_list[0], \ | |
| expanded=False): | |
| t0_decoder = st.selectbox('decoder', ['greedy', 'beamsearch', 'wordbeamsearch'], \ | |
| help="decoder (string, default = 'greedy') - options are 'greedy', \ | |
| 'beamsearch' and 'wordbeamsearch.") | |
| t0_beamWidth = st.slider('beamWidth', 2, 20, 5, step=1, \ | |
| help="beamWidth (int, default = 5) - How many beam to keep when decoder = \ | |
| 'beamsearch' or 'wordbeamsearch'.") | |
| t0_batch_size = st.slider('batch_size', 1, 10, 1, step=1, \ | |
| help="batch_size (int, default = 1) - batch_size>1 will make EasyOCR faster \ | |
| but use more memory.") | |
| t0_workers = st.slider('workers', 0, 10, 0, step=1, \ | |
| help="workers (int, default = 0) - Number thread used in of dataloader.") | |
| t0_allowlist = st.text_input('allowlist', value="", max_chars=None, \ | |
| placeholder='Force EasyOCR to recognize only this subset of characters', \ | |
| help='''allowlist (string) - Force EasyOCR to recognize only subset of characters.\n | |
| Usefor specific problem (E.g. license plate, etc.)''') | |
| t0_blocklist = st.text_input('blocklist', value="", max_chars=None, \ | |
| placeholder='Block subset of character (will be ignored if allowlist is given)', \ | |
| help='''blocklist (string) - Block subset of character. This argument will be \ | |
| ignored if allowlist is given.''') | |
| t0_detail = st.radio('detail', [0, 1], 1, horizontal=True, \ | |
| help="detail (int, default = 1) - Set this to 0 for simple output") | |
| t0_paragraph = st.radio('paragraph', [True, False], 1, horizontal=True, \ | |
| help='paragraph (bool, default = False) - Combine result into paragraph') | |
| t0_contrast_ths = st.slider('contrast_ths', 0.05, 1., 0.1, step=0.01, \ | |
| help='''contrast_ths (float, default = 0.1) - Text box with contrast lower than \ | |
| this value will be passed into model 2 times.\n | |
| Firs with original image and second with contrast adjusted to 'adjust_contrast' value.\n | |
| The with more confident level will be returned as a result.''') | |
| t0_adjust_contrast = st.slider('adjust_contrast', 0.1, 1., 0.5, step=0.1, \ | |
| help = 'adjust_contrast (float, default = 0.5) - target contrast level for low \ | |
| contrast text box') | |
| with st.expander("Choose recognition hyperparameters for " + reader_type_list[1], \ | |
| expanded=False): | |
| t1_rec_algorithm = st.selectbox('rec_algorithm', ['CRNN', 'SVTR_LCNet'], 0, \ | |
| help="Type of recognition algorithm selected. (default=CRNN)") | |
| t1_rec_batch_num = st.slider('rec_batch_num', 1, 50, step=1, \ | |
| help="When performing recognition, the batchsize of forward images. \ | |
| (default=30)") | |
| t1_max_text_length = st.slider('max_text_length', 3, 250, 25, step=1, \ | |
| help="The maximum text length that the recognition algorithm can recognize. \ | |
| (default=25)") | |
| t1_use_space_char = st.radio('use_space_char', [True, False], 0, horizontal=True, \ | |
| help="Whether to recognize spaces. (default=TRUE)") | |
| t1_drop_score = st.slider('drop_score', 0., 1., 0.25, step=.05, \ | |
| help="Filter the output by score (from the recognition model), and those \ | |
| below this score will not be returned. (default=0.5)") | |
| with st.expander("Choose recognition hyperparameters for " + reader_type_list[2], \ | |
| expanded=False): | |
| t2_recog = st.selectbox('recog', ['ABINet','CRNN','CRNN_TPS','MASTER', \ | |
| 'NRTR_1/16-1/8','NRTR_1/8-1/4','RobustScanner','SAR','SAR_CN', \ | |
| 'SATRN','SATRN_sm','SEG','Tesseract'], 7, \ | |
| help='Text recognition algorithm. (default = SAR)') | |
| st.write("###### *More about text recognition models* 👉 \ | |
| [here](https://mmocr.readthedocs.io/en/latest/textrecog_models.html)") | |
| with st.expander("Choose recognition hyperparameters for " + reader_type_list[3], \ | |
| expanded=False): | |
| t3r_psm = st.selectbox('Page segmentation mode (psm)', \ | |
| [' - Default', \ | |
| ' 4 Assume a single column of text of variable sizes', \ | |
| ' 5 Assume a single uniform block of vertically aligned \ | |
| text', \ | |
| ' 6 Assume a single uniform block of text', \ | |
| ' 7 Treat the image as a single text line', \ | |
| ' 8 Treat the image as a single word', \ | |
| ' 9 Treat the image as a single word in a circle', \ | |
| '10 Treat the image as a single character', \ | |
| '11 Sparse text. Find as much text as possible in no \ | |
| particular order', \ | |
| '13 Raw line. Treat the image as a single text line, \ | |
| bypassing hacks that are Tesseract-specific']) | |
| t3r_oem = st.selectbox('OCR engine mode', ['0 Legacy engine only', \ | |
| '1 Neural nets LSTM engine only', \ | |
| '2 Legacy + LSTM engines', \ | |
| '3 Default, based on what is available'], 3) | |
| t3r_whitelist = st.text_input('Limit tesseract to recognize only this \ | |
| characters :', \ | |
| placeholder='Limit tesseract to recognize only this characters', \ | |
| help='Example for numbers only : 0123456789') | |
| submit_reco = st.form_submit_button("Launch recognition") | |
| if submit_reco: | |
| process_detect.clear() | |
| ##----------- Process recognition ------------------------------------------ | |
| reader_ind = reader_type_dict[st.session_state.detect_reader] | |
| list_boxes = list_coordinates[reader_ind] | |
| # Construct the config Tesseract parameter | |
| t3r_config = '' | |
| psm = t3r_psm[:2] | |
| if psm != ' -': | |
| t3r_config += '--psm ' + psm.strip() | |
| oem = t3r_oem[:1] | |
| if oem != '3': | |
| t3r_config += ' --oem ' + oem | |
| if t3r_whitelist != '': | |
| t3r_config += ' -c tessedit_char_whitelist=' + t3r_whitelist | |
| list_params_rec = \ | |
| [{'decoder': t0_decoder, 'beamWidth': t0_beamWidth, \ | |
| 'batch_size': t0_batch_size, 'workers': t0_workers, \ | |
| 'allowlist': t0_allowlist, 'blocklist': t0_blocklist, \ | |
| 'detail': t0_detail, 'paragraph': t0_paragraph, \ | |
| 'contrast_ths': t0_contrast_ths, 'adjust_contrast': t0_adjust_contrast | |
| }, | |
| { **list_params_det[1][1], **{'rec_algorithm': t1_rec_algorithm, \ | |
| 'rec_batch_num': t1_rec_batch_num, 'max_text_length': t1_max_text_length, \ | |
| 'use_space_char': t1_use_space_char, 'drop_score': t1_drop_score}, \ | |
| **{'lang': list_params_det[1][0]} | |
| }, | |
| {'recog': t2_recog}, | |
| {'lang': tesserocr_lang, 'config': t3r_config} | |
| ] | |
| show_info2 = st.empty() | |
| with show_info2.container(): | |
| st.info("Text recognition in progress ...") | |
| df_results, df_results_tesseract, list_reco_status = \ | |
| process_recog(list_readers, list_images[1], list_boxes, list_params_rec) | |
| show_info2.empty() | |
| st.session_state.df_results = df_results | |
| st.session_state.list_boxes = list_boxes | |
| st.session_state.df_results_tesseract = df_results_tesseract | |
| st.session_state.list_reco_status = list_reco_status | |
| if 'df_results' in st.session_state: | |
| ##----------- Show recognition results ------------------------------------------------------------ | |
| results_cols = st.session_state.df_results.columns | |
| list_col_text = np.arange(1, len(cols_size), 2) | |
| list_col_confid = np.arange(2, len(cols_size), 2) | |
| dict_draw_reco = {'in_image': st.session_state.list_images[1], \ | |
| 'in_boxes_coordinates': st.session_state.list_boxes, \ | |
| 'in_list_texts': [st.session_state.df_results[x].to_list() \ | |
| for x in results_cols[list_col_text]], \ | |
| 'in_list_confid': [st.session_state.df_results[x].to_list() \ | |
| for x in results_cols[list_col_confid]], \ | |
| 'in_dict_back_colors': dict_back_colors, \ | |
| 'in_df_results_tesseract' : st.session_state.df_results_tesseract, \ | |
| 'in_reader_type_list': reader_type_list | |
| } | |
| show_reco = st.empty() | |
| with st.form("form3"): | |
| st.plotly_chart(fig_colorscale, use_container_width=True) | |
| col_font, col_threshold = st.columns(2) | |
| col_font.slider('Font scale', 1, 7, 4, step=1, key="font_scale_sld") | |
| col_threshold.slider('% confidence threshold for text color change', 40, 100, 64, \ | |
| step=1, key="conf_threshold_sld") | |
| col_threshold.write("(text color is black below this % confidence threshold, \ | |
| and white above)") | |
| draw_reco_images(**dict_draw_reco) | |
| submit_resize = st.form_submit_button("Refresh") | |
| if submit_resize: | |
| draw_reco_images(**dict_draw_reco, \ | |
| in_font_scale=st.session_state.font_scale_sld, \ | |
| in_conf_threshold=st.session_state.conf_threshold_sld) | |
| st.subheader("Recognition details") | |
| with st.expander("Detailed areas for EasyOCR, PPOCR, MMOCR", expanded=True): | |
| cols = st.columns(cols_size) | |
| cols[0].markdown('#### Detected area') | |
| for i in range(1, (len(reader_type_list)-1)*2, 2): | |
| cols[i].markdown('#### with ' + reader_type_list[i//2]) | |
| for row in st.session_state.df_results.itertuples(): | |
| #cols = st.columns(1 + len(reader_type_list)*2) | |
| cols = st.columns(cols_size) | |
| cols[0].image(row.cropped_image, width=150) | |
| for ind_col in range(1, len(cols), 2): | |
| cols[ind_col].write(getattr(row, results_cols[ind_col])) | |
| cols[ind_col+1].write("("+str( \ | |
| getattr(row, results_cols[ind_col+1]))+"%)") | |
| st.download_button( | |
| label="Download results as CSV file", | |
| data=convert_df(st.session_state.df_results), | |
| file_name='OCR_comparator_results.csv', | |
| mime='text/csv', | |
| ) | |
| if not st.session_state.df_results_tesseract.empty: | |
| with st.expander("Detailed areas for Tesseract", expanded=False): | |
| cols = st.columns([2,2,1]) | |
| cols[0].markdown('#### Detected area') | |
| cols[1].markdown('#### with Tesseract') | |
| for row in st.session_state.df_results_tesseract.itertuples(): | |
| cols = st.columns([2,2,1]) | |
| cols[0].image(row.cropped, width=150) | |
| cols[1].write(getattr(row, 'text')) | |
| cols[2].write("("+str(getattr(row, 'conf'))+"%)") | |
| st.download_button( | |
| label="Download Tesseract results as CSV file", | |
| data=convert_df(st.session_state.df_results), | |
| file_name='OCR_comparator_Tesseract_results.csv', | |
| mime='text/csv', | |
| ) | |