Spaces:
Running
on
L4
Running
on
L4
| # -------------------------------------------------------- | |
| # Adapted from: https://github.com/openai/point-e | |
| # Licensed under the MIT License | |
| # Copyright (c) 2022 OpenAI | |
| # Permission is hereby granted, free of charge, to any person obtaining a copy | |
| # of this software and associated documentation files (the "Software"), to deal | |
| # in the Software without restriction, including without limitation the rights | |
| # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
| # copies of the Software, and to permit persons to whom the Software is | |
| # furnished to do so, subject to the following conditions: | |
| # The above copyright notice and this permission notice shall be included in all | |
| # copies or substantial portions of the Software. | |
| # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
| # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
| # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | |
| # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
| # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
| # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | |
| # SOFTWARE. | |
| # -------------------------------------------------------- | |
| import math | |
| from typing import Any, Dict, Iterable, Optional, Sequence, Union | |
| import numpy as np | |
| import torch as th | |
| def sigmoid_schedule(t, start=-3, end=3, tau=0.6, clip_min=1e-9): | |
| def sigmoid(x): | |
| return 1 / (1 + np.exp(-x)) | |
| v_start = sigmoid(start / tau) | |
| v_end = sigmoid(end / tau) | |
| output = sigmoid((t * (end - start) + start) / tau) | |
| output = (v_end - output) / (v_end - v_start) | |
| return np.clip(output, clip_min, 1.0) | |
| def get_beta_schedule(beta_schedule, *, beta_start, beta_end, num_diffusion_timesteps): | |
| """ | |
| This is the deprecated API for creating beta schedules. | |
| See get_named_beta_schedule() for the new library of schedules. | |
| """ | |
| if beta_schedule == "linear": | |
| betas = np.linspace( | |
| beta_start, beta_end, num_diffusion_timesteps, dtype=np.float64 | |
| ) | |
| else: | |
| raise NotImplementedError(beta_schedule) | |
| assert betas.shape == (num_diffusion_timesteps,) | |
| return betas | |
| def get_named_beta_schedule(schedule_name, num_diffusion_timesteps, exp_p=12): | |
| """ | |
| Get a pre-defined beta schedule for the given name. | |
| The beta schedule library consists of beta schedules which remain similar | |
| in the limit of num_diffusion_timesteps. | |
| Beta schedules may be added, but should not be removed or changed once | |
| they are committed to maintain backwards compatibility. | |
| """ | |
| if schedule_name == "linear": | |
| # Linear schedule from Ho et al, extended to work for any number of | |
| # diffusion steps. | |
| scale = 1000 / num_diffusion_timesteps | |
| return get_beta_schedule( | |
| "linear", | |
| beta_start=scale * 0.0001, | |
| beta_end=scale * 0.02, | |
| num_diffusion_timesteps=num_diffusion_timesteps, | |
| ) | |
| elif schedule_name == "cosine": | |
| return betas_for_alpha_bar( | |
| num_diffusion_timesteps, | |
| lambda t: math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2, | |
| ) | |
| elif schedule_name == "sigmoid": | |
| # Sigmoid schedule passed through betas_for_alpha_bar | |
| return betas_for_alpha_bar( | |
| num_diffusion_timesteps, lambda t: sigmoid_schedule(t) | |
| ) | |
| else: | |
| raise NotImplementedError(f"unknown beta schedule: {schedule_name}") | |
| def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999): | |
| """ | |
| Create a beta schedule that discretizes the given alpha_t_bar function, | |
| which defines the cumulative product of (1-beta) over time from t = [0,1]. | |
| :param num_diffusion_timesteps: the number of betas to produce. | |
| :param alpha_bar: a lambda that takes an argument t from 0 to 1 and | |
| produces the cumulative product of (1-beta) up to that | |
| part of the diffusion process. | |
| :param max_beta: the maximum beta to use; use values lower than 1 to | |
| prevent singularities. | |
| """ | |
| betas = [] | |
| for i in range(num_diffusion_timesteps): | |
| t1 = i / num_diffusion_timesteps | |
| t2 = (i + 1) / num_diffusion_timesteps | |
| betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta)) | |
| return np.array(betas) | |
| def space_timesteps(num_timesteps, section_counts): | |
| """ | |
| Create a list of timesteps to use from an original diffusion process, | |
| given the number of timesteps we want to take from equally-sized portions | |
| of the original process. | |
| For example, if there's 300 timesteps and the section counts are [10,15,20] | |
| then the first 100 timesteps are strided to be 10 timesteps, the second 100 | |
| are strided to be 15 timesteps, and the final 100 are strided to be 20. | |
| :param num_timesteps: the number of diffusion steps in the original | |
| process to divide up. | |
| :param section_counts: either a list of numbers, or a string containing | |
| comma-separated numbers, indicating the step count | |
| per section. As a special case, use "ddimN" where N | |
| is a number of steps to use the striding from the | |
| DDIM paper. | |
| :return: a set of diffusion steps from the original process to use. | |
| """ | |
| if isinstance(section_counts, str): | |
| if section_counts.startswith("ddim"): | |
| desired_count = int(section_counts[len("ddim") :]) | |
| for i in range(1, num_timesteps): | |
| if len(range(0, num_timesteps, i)) == desired_count: | |
| return set(range(0, num_timesteps, i)) | |
| raise ValueError( | |
| f"cannot create exactly {num_timesteps} steps with an integer stride" | |
| ) | |
| elif section_counts.startswith("exact"): | |
| res = set(int(x) for x in section_counts[len("exact") :].split(",")) | |
| for x in res: | |
| if x < 0 or x >= num_timesteps: | |
| raise ValueError(f"timestep out of bounds: {x}") | |
| return res | |
| section_counts = [int(x) for x in section_counts.split(",")] | |
| size_per = num_timesteps // len(section_counts) | |
| extra = num_timesteps % len(section_counts) | |
| start_idx = 0 | |
| all_steps = [] | |
| for i, section_count in enumerate(section_counts): | |
| size = size_per + (1 if i < extra else 0) | |
| if size < section_count: | |
| raise ValueError( | |
| f"cannot divide section of {size} steps into {section_count}" | |
| ) | |
| if section_count <= 1: | |
| frac_stride = 1 | |
| else: | |
| frac_stride = (size - 1) / (section_count - 1) | |
| cur_idx = 0.0 | |
| taken_steps = [] | |
| for _ in range(section_count): | |
| taken_steps.append(start_idx + round(cur_idx)) | |
| cur_idx += frac_stride | |
| all_steps += taken_steps | |
| start_idx += size | |
| return set(all_steps) | |
| def _extract_into_tensor(arr, timesteps, broadcast_shape): | |
| """Extract values from a 1-D numpy array for a batch of indices.""" | |
| res = th.from_numpy(arr).to(device=timesteps.device)[timesteps].float() | |
| while len(res.shape) < len(broadcast_shape): | |
| res = res[..., None] | |
| return res + th.zeros(broadcast_shape, device=timesteps.device) | |
| class GaussianDiffusion: | |
| """ | |
| Utilities for sampling from Gaussian diffusion models. | |
| """ | |
| def __init__( | |
| self, | |
| *, | |
| betas: Sequence[float], | |
| model_mean_type: str, | |
| model_var_type: str, | |
| channel_scales: Optional[np.ndarray] = None, | |
| channel_biases: Optional[np.ndarray] = None, | |
| ): | |
| self.model_mean_type = model_mean_type | |
| self.model_var_type = model_var_type | |
| self.channel_scales = channel_scales | |
| self.channel_biases = channel_biases | |
| # Use float64 for accuracy | |
| betas = np.array(betas, dtype=np.float64) | |
| self.betas = betas | |
| assert len(betas.shape) == 1, "betas must be 1-D" | |
| assert (betas > 0).all() and (betas <= 1).all() | |
| self.num_timesteps = int(betas.shape[0]) | |
| alphas = 1.0 - betas | |
| self.alphas_cumprod = np.cumprod(alphas, axis=0) | |
| self.alphas_cumprod_prev = np.append(1.0, self.alphas_cumprod[:-1]) | |
| # calculations for diffusion q(x_t | x_{t-1}) and others | |
| self.sqrt_alphas_cumprod = np.sqrt(self.alphas_cumprod) | |
| self.sqrt_one_minus_alphas_cumprod = np.sqrt(1.0 - self.alphas_cumprod) | |
| self.sqrt_recip_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod) | |
| self.sqrt_recipm1_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod - 1) | |
| # calculations for posterior q(x_{t-1} | x_t, x_0) | |
| self.posterior_variance = ( | |
| betas * (1.0 - self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod) | |
| ) | |
| # below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain | |
| self.posterior_log_variance_clipped = np.log( | |
| np.append(self.posterior_variance[1], self.posterior_variance[1:]) | |
| ) | |
| self.posterior_mean_coef1 = ( | |
| betas * np.sqrt(self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod) | |
| ) | |
| self.posterior_mean_coef2 = ( | |
| (1.0 - self.alphas_cumprod_prev) | |
| * np.sqrt(alphas) | |
| / (1.0 - self.alphas_cumprod) | |
| ) | |
| def scale_channels(self, x: th.Tensor) -> th.Tensor: | |
| """Apply channel-wise scaling.""" | |
| if self.channel_scales is not None: | |
| x = x * th.from_numpy(self.channel_scales).to(x).reshape( | |
| [1, -1, *([1] * (len(x.shape) - 2))] | |
| ) | |
| if self.channel_biases is not None: | |
| x = x + th.from_numpy(self.channel_biases).to(x).reshape( | |
| [1, -1, *([1] * (len(x.shape) - 2))] | |
| ) | |
| return x | |
| def unscale_channels(self, x: th.Tensor) -> th.Tensor: | |
| """Remove channel-wise scaling.""" | |
| if self.channel_biases is not None: | |
| x = x - th.from_numpy(self.channel_biases).to(x).reshape( | |
| [1, -1, *([1] * (len(x.shape) - 2))] | |
| ) | |
| if self.channel_scales is not None: | |
| x = x / th.from_numpy(self.channel_scales).to(x).reshape( | |
| [1, -1, *([1] * (len(x.shape) - 2))] | |
| ) | |
| return x | |
| def unscale_out_dict( | |
| self, out: Dict[str, Union[th.Tensor, Any]] | |
| ) -> Dict[str, Union[th.Tensor, Any]]: | |
| return { | |
| k: (self.unscale_channels(v) if isinstance(v, th.Tensor) else v) | |
| for k, v in out.items() | |
| } | |
| def q_posterior_mean_variance(self, x_start, x_t, t): | |
| """ | |
| Compute the mean and variance of the diffusion posterior: | |
| q(x_{t-1} | x_t, x_0) | |
| """ | |
| assert x_start.shape == x_t.shape | |
| posterior_mean = ( | |
| _extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start | |
| + _extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t | |
| ) | |
| posterior_variance = _extract_into_tensor(self.posterior_variance, t, x_t.shape) | |
| posterior_log_variance_clipped = _extract_into_tensor( | |
| self.posterior_log_variance_clipped, t, x_t.shape | |
| ) | |
| assert ( | |
| posterior_mean.shape[0] | |
| == posterior_variance.shape[0] | |
| == posterior_log_variance_clipped.shape[0] | |
| == x_start.shape[0] | |
| ) | |
| return posterior_mean, posterior_variance, posterior_log_variance_clipped | |
| def p_mean_variance( | |
| self, model, x, t, clip_denoised=True, denoised_fn=None, model_kwargs=None | |
| ): | |
| """ | |
| Apply the model to get p(x_{t-1} | x_t). | |
| """ | |
| if model_kwargs is None: | |
| model_kwargs = {} | |
| B, C = x.shape[:2] | |
| assert t.shape == (B,) | |
| # Direct prediction of eps | |
| model_output = model(x, t, **model_kwargs) | |
| if isinstance(model_output, tuple): | |
| model_output, prev_latent = model_output | |
| model_kwargs["prev_latent"] = prev_latent | |
| # Convert model output to mean and variance | |
| model_variance, model_log_variance = { | |
| # for fixedlarge, we set the initial (log-)variance like so | |
| # to get a better decoder log likelihood. | |
| "fixed_large": ( | |
| np.append(self.posterior_variance[1], self.betas[1:]), | |
| np.log(np.append(self.posterior_variance[1], self.betas[1:])), | |
| ), | |
| "fixed_small": ( | |
| self.posterior_variance, | |
| self.posterior_log_variance_clipped, | |
| ), | |
| }[self.model_var_type] | |
| model_variance = _extract_into_tensor(model_variance, t, x.shape) | |
| model_log_variance = _extract_into_tensor(model_log_variance, t, x.shape) | |
| def process_xstart(x): | |
| if denoised_fn is not None: | |
| x = denoised_fn(x) | |
| if clip_denoised: | |
| x = x.clamp( | |
| -self.channel_scales[0] * 0.67, self.channel_scales[0] * 0.67 | |
| ) | |
| x[:, 3:] = x[:, 3:].clamp( | |
| -self.channel_scales[3] * 0.5, self.channel_scales[3] * 0.5 | |
| ) | |
| return x | |
| return x | |
| if self.model_mean_type == "x_prev": | |
| pred_xstart = process_xstart( | |
| self._predict_xstart_from_xprev(x_t=x, t=t, xprev=model_output) | |
| ) | |
| model_mean = model_output | |
| elif self.model_mean_type in ["x_start", "epsilon"]: | |
| if self.model_mean_type == "x_start": | |
| pred_xstart = process_xstart(model_output) | |
| else: | |
| pred_xstart = process_xstart( | |
| self._predict_xstart_from_eps(x_t=x, t=t, eps=model_output) | |
| ) | |
| model_mean, _, _ = self.q_posterior_mean_variance( | |
| x_start=pred_xstart, x_t=x, t=t | |
| ) | |
| # print('p_mean_variance:', pred_xstart.min(), pred_xstart.max()) | |
| else: | |
| raise NotImplementedError(self.model_mean_type) | |
| assert ( | |
| model_mean.shape == model_log_variance.shape == pred_xstart.shape == x.shape | |
| ) | |
| return { | |
| "mean": model_mean, | |
| "variance": model_variance, | |
| "log_variance": model_log_variance, | |
| "pred_xstart": pred_xstart, | |
| } | |
| def _predict_xstart_from_eps(self, x_t, t, eps): | |
| assert x_t.shape == eps.shape | |
| return ( | |
| _extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t | |
| - _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * eps | |
| ) | |
| def _predict_xstart_from_xprev(self, x_t, t, xprev): | |
| assert x_t.shape == xprev.shape | |
| return ( # (xprev - coef2*x_t) / coef1 | |
| _extract_into_tensor(1.0 / self.posterior_mean_coef1, t, x_t.shape) * xprev | |
| - _extract_into_tensor( | |
| self.posterior_mean_coef2 / self.posterior_mean_coef1, t, x_t.shape | |
| ) | |
| * x_t | |
| ) | |
| def _predict_eps_from_xstart(self, x_t, t, pred_xstart): | |
| return ( | |
| _extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t | |
| - pred_xstart | |
| ) / _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) | |
| def ddim_sample_loop_progressive( | |
| self, | |
| model, | |
| shape, | |
| noise=None, | |
| clip_denoised=True, | |
| denoised_fn=None, | |
| model_kwargs=None, | |
| device=None, | |
| progress=False, | |
| eta=0.0, | |
| ): | |
| """ | |
| Use DDIM to sample from the model and yield intermediate samples. | |
| """ | |
| if device is None: | |
| device = next(model.parameters()).device | |
| assert isinstance(shape, (tuple, list)) | |
| if noise is not None: | |
| img = noise | |
| else: | |
| img = th.randn(*shape, device=device) | |
| indices = list(range(self.num_timesteps))[::-1] | |
| if progress: | |
| from tqdm.auto import tqdm | |
| indices = tqdm(indices) | |
| for i in indices: | |
| t = th.tensor([i] * shape[0], device=device) | |
| with th.no_grad(): | |
| out = self.ddim_sample( | |
| model, | |
| img, | |
| t, | |
| clip_denoised=clip_denoised, | |
| denoised_fn=denoised_fn, | |
| model_kwargs=model_kwargs, | |
| eta=eta, | |
| ) | |
| yield self.unscale_out_dict(out) | |
| img = out["sample"] | |
| def _predict_eps_from_xstart(self, x_t, t, pred_xstart): | |
| return ( | |
| _extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t | |
| - pred_xstart | |
| ) / _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) | |
| def ddim_sample( | |
| self, | |
| model, | |
| x, | |
| t, | |
| clip_denoised=True, | |
| denoised_fn=None, | |
| model_kwargs=None, | |
| eta=0.0, | |
| ): | |
| """ | |
| Sample x_{t-1} from the model using DDIM. | |
| """ | |
| out = self.p_mean_variance( | |
| model, | |
| x, | |
| t, | |
| clip_denoised=clip_denoised, | |
| denoised_fn=denoised_fn, | |
| model_kwargs=model_kwargs, | |
| ) | |
| # Usually our model outputs epsilon, but we re-derive it | |
| # in case we used x_start or x_prev prediction. | |
| eps = self._predict_eps_from_xstart(x, t, out["pred_xstart"]) | |
| alpha_bar = _extract_into_tensor(self.alphas_cumprod, t, x.shape) | |
| alpha_bar_prev = _extract_into_tensor(self.alphas_cumprod_prev, t, x.shape) | |
| sigma = ( | |
| eta | |
| * th.sqrt((1 - alpha_bar_prev) / (1 - alpha_bar)) | |
| * th.sqrt(1 - alpha_bar / alpha_bar_prev) | |
| ) | |
| # Equation 12. | |
| noise = th.randn_like(x) | |
| mean_pred = ( | |
| out["pred_xstart"] * th.sqrt(alpha_bar_prev) | |
| + th.sqrt(1 - alpha_bar_prev - sigma**2) * eps | |
| ) | |
| nonzero_mask = (t != 0).float().view(-1, *([1] * (len(x.shape) - 1))) | |
| sample = mean_pred + nonzero_mask * sigma * noise | |
| return {"sample": sample, "pred_xstart": out["pred_xstart"]} | |
| class SpacedDiffusion(GaussianDiffusion): | |
| """ | |
| A diffusion process which can skip steps in a base diffusion process. | |
| """ | |
| def __init__(self, use_timesteps: Iterable[int], **kwargs): | |
| self.use_timesteps = set(use_timesteps) | |
| self.timestep_map = [] | |
| self.original_num_steps = len(kwargs["betas"]) | |
| base_diffusion = GaussianDiffusion(**kwargs) | |
| last_alpha_cumprod = 1.0 | |
| new_betas = [] | |
| for i, alpha_cumprod in enumerate(base_diffusion.alphas_cumprod): | |
| if i in self.use_timesteps: | |
| new_betas.append(1 - alpha_cumprod / last_alpha_cumprod) | |
| last_alpha_cumprod = alpha_cumprod | |
| self.timestep_map.append(i) | |
| kwargs["betas"] = np.array(new_betas) | |
| super().__init__(**kwargs) | |
| def p_mean_variance(self, model, *args, **kwargs): | |
| return super().p_mean_variance(self._wrap_model(model), *args, **kwargs) | |
| def _wrap_model(self, model): | |
| if isinstance(model, _WrappedModel): | |
| return model | |
| return _WrappedModel(model, self.timestep_map, self.original_num_steps) | |
| class _WrappedModel: | |
| """Helper class to wrap models for SpacedDiffusion.""" | |
| def __init__(self, model, timestep_map, original_num_steps): | |
| self.model = model | |
| self.timestep_map = timestep_map | |
| self.original_num_steps = original_num_steps | |
| def __call__(self, x, ts, **kwargs): | |
| map_tensor = th.tensor(self.timestep_map, device=ts.device, dtype=ts.dtype) | |
| new_ts = map_tensor[ts] | |
| return self.model(x, new_ts, **kwargs) | |