# Performance Analysis Report 1. **Retrieval Time**: - Milvus + LLaMA: 0.132s - Weaviate + Mistral: 0.157s - Milvus + Mistral: NaN 2. **Context Relevance** (higher is better): - Milvus + LLaMA: 0.640 - Weaviate + Mistral: 0.591 - Milvus + Mistral: 0.518 3. **Context Utilization** (higher is better): - Milvus + LLaMA: 0.673 - Weaviate + Mistral: 0.619 - Milvus + Mistral: 0.614 4. **AUCROC** (Area Under ROC Curve): - Milvus + LLaMA: 0.912 - Weaviate + Mistral: 0.750 - Milvus + Mistral: 0.844 5. **RMSE** (Root Mean Square Error): - Milvus + LLaMA: - Context Relevance RMSE: 0.179 - Context Utilization RMSE: 0.302 - Weaviate + Mistral: - Context Relevance RMSE: 0.414 - Context Utilization RMSE: 0.482 - Milvus + Mistral: - Context Relevance RMSE: 0.167 - Context Utilization RMSE: 0.258 ## Analysis 1. **Best Overall Performance: Milvus + LLaMA** - Highest AUCROC score (0.912) - Best context relevance (0.640) and utilization (0.673) - Fast retrieval time (0.132s) - Moderate RMSE scores 2. **Runner-up: Milvus + Mistral** - Second-best AUCROC (0.844) - Lowest RMSE scores overall - Lower context relevance and utilization - Retrieval time data unavailable 3. **Third Place: Weaviate + Mistral** - Lowest AUCROC (0.750) - Highest RMSE scores - Slowest retrieval time (0.157s) - Moderate context metrics ## Recommendation Based on the comprehensive analysis of all metrics, Milvus + LLaMA emerges as the optimal choice for overall performance. It demonstrates: - Superior accuracy (highest AUCROC) - Better context handling capabilities - Efficient retrieval speed - Reasonable error rates However, if minimizing error (RMSE) is the primary objective, Milvus + Mistral could be a viable alternative due to its lower error rates in both context relevance and utilization metrics.