minichain / selfask.py
srush's picture
srush HF staff
Upload with huggingface_hub
8200c4e
desc = """
### Self-Ask
Notebook implementation of the self-ask + Google tool use prompt. [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/srush/MiniChain/blob/master/examples/selfask.ipynb)
(Adapted from [Self-Ask repo](https://github.com/ofirpress/self-ask))
"""
# $
from dataclasses import dataclass, replace
from typing import Optional
from minichain import prompt, show, OpenAI, Google, transform
@dataclass
class State:
question: str
history: str = ""
next_query: Optional[str] = None
final_answer: Optional[str] = None
@prompt(OpenAI(stop="\nIntermediate answer:"),
template_file = "selfask.pmpt.tpl")
def self_ask(model, state):
return model(state)
@transform()
def next_step(ask):
res = ask.split(":", 1)[1]
if out.startswith("Follow up:"):
return replace(state, next_query=res)
elif out.startswith("So the final answer is:"):
return replace(state, final_answer=res)
@prompt(Google())
def google(model, state):
if state.next_query is None:
return ""
return model(state.next_query)
@transform()
def update(state, result):
if not result:
return state
return State(state.question,
state.history + "\nIntermediate answer: " + result + "\n")
def selfask(question):
state = State(question)
for i in range(3):
state = next_step(self_ask(state))
state = update(google(state))
return state
# $
gradio = show(selfask,
examples=["What is the zip code of the city where George Washington was born?"],
subprompts=[self_ask, google] * 3,
description=desc,
code=open("selfask.py", "r").read().split("$")[1].strip().strip("#").strip(),
out_type="json"
)
if __name__ == "__main__":
gradio.queue().launch()