minichain / gatsby.py
srush's picture
srush HF staff
Upload with huggingface_hub
8200c4e
# + tags=["hide_inp"]
desc = """
### Book QA
Chain that does question answering with Hugging Face embeddings. [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/srush/MiniChain/blob/master/examples/gatsby.ipynb)
(Adapted from the [LlamaIndex example](https://github.com/jerryjliu/gpt_index/blob/main/examples/gatsby/TestGatsby.ipynb).)
"""
# -
# $
import datasets
import numpy as np
from minichain import prompt, show, HuggingFaceEmbed, OpenAI, transform
# Load data with embeddings (computed beforehand)
gatsby = datasets.load_from_disk("gatsby")
gatsby.add_faiss_index("embeddings")
# Fast KNN retrieval prompt
@prompt(HuggingFaceEmbed("sentence-transformers/all-mpnet-base-v2"))
def embed(model, inp):
return model(inp)
@transform()
def get_neighbors(embedding, k=1):
res = gatsby.get_nearest_examples("embeddings", np.array(embedding), k)
return res.examples["passages"]
@prompt(OpenAI(), template_file="gatsby.pmpt.tpl")
def ask(model, query, neighbors):
return model(dict(question=query, docs=neighbors))
def gatsby_q(query):
n = get_neighbors(embed(query))
return ask(query, n)
# $
gradio = show(gatsby_q,
subprompts=[ask],
examples=["What did Gatsby do before he met Daisy?",
"What did the narrator do after getting back to Chicago?"],
keys={"HF_KEY"},
description=desc,
code=open("gatsby.py", "r").read().split("$")[1].strip().strip("#").strip()
)
if __name__ == "__main__":
gradio.queue().launch()