File size: 3,831 Bytes
7b856a8 4e3dc76 872b692 4e3dc76 f5ec828 4e3dc76 f5ec828 872b692 f5ec828 7b856a8 f5ec828 872b692 7b856a8 f5ec828 7b856a8 4e3dc76 f5ec828 4e3dc76 7b856a8 f5ec828 872b692 f5ec828 7b856a8 4e3dc76 7b856a8 f5ec828 872b692 f5ec828 7b856a8 4e3dc76 7b856a8 f5ec828 872b692 7b856a8 4e3dc76 7b856a8 4e3dc76 7b856a8 f5ec828 872b692 7b856a8 4e3dc76 f5ec828 4e3dc76 7b856a8 f5ec828 872b692 f5ec828 7b856a8 4e3dc76 7b856a8 4e3dc76 7b856a8 f5ec828 872b692 f5ec828 7b856a8 4e3dc76 7b856a8 4e3dc76 872b692 4e3dc76 7b856a8 f5ec828 7b856a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "e9c5f0df",
"metadata": {
"lines_to_next_cell": 2
},
"outputs": [],
"source": [
"!pip install -q git+https://github.com/srush/MiniChain\n",
"!git clone https://github.com/srush/MiniChain; cp -fr MiniChain/examples/* . "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "56932926",
"metadata": {
"lines_to_next_cell": 2
},
"outputs": [],
"source": [
"desc = \"\"\"\n",
"### Self-Ask\n",
"\n",
" Notebook implementation of the self-ask + Google tool use prompt. [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/srush/MiniChain/blob/master/examples/selfask.ipynb)\n",
"\n",
" (Adapted from [Self-Ask repo](https://github.com/ofirpress/self-ask))\n",
"\"\"\""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "43d24799",
"metadata": {},
"outputs": [],
"source": [
"from dataclasses import dataclass, replace\n",
"from typing import Optional\n",
"from minichain import prompt, show, OpenAI, Google"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "506b8e41",
"metadata": {},
"outputs": [],
"source": [
"@dataclass\n",
"class State:\n",
" question: str\n",
" history: str = \"\"\n",
" next_query: Optional[str] = None\n",
" final_answer: Optional[str] = None"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "fb5fdf8e",
"metadata": {
"lines_to_next_cell": 1
},
"outputs": [],
"source": [
"@prompt(OpenAI(),\n",
" template_file = \"selfask.pmpt.tpl\",\n",
" stop_template = \"\\nIntermediate answer:\")\n",
"def self_ask(model, state):\n",
" out = model(state)\n",
" res = out.split(\":\", 1)[1]\n",
" if out.startswith(\"Follow up:\"):\n",
" return replace(state, next_query=res)\n",
" elif out.startswith(\"So the final answer is:\"):\n",
" return replace(state, final_answer=res)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f2d66476",
"metadata": {
"lines_to_next_cell": 1
},
"outputs": [],
"source": [
"@prompt(Google())\n",
"def google(model, state):\n",
" if state.next_query is None:\n",
" return state\n",
"\n",
" result = model(state.next_query)\n",
" return State(state.question,\n",
" state.history + \"\\nIntermediate answer: \" + result + \"\\n\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e41d7a75",
"metadata": {},
"outputs": [],
"source": [
"def selfask(question):\n",
" state = State(question)\n",
" for i in range(3):\n",
" state = self_ask(state)\n",
" state = google(state)\n",
" return state"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e6e4b06f",
"metadata": {},
"outputs": [],
"source": [
"gradio = show(selfask,\n",
" examples=[\"What is the zip code of the city where George Washington was born?\"],\n",
" subprompts=[self_ask, google] * 3,\n",
" description=desc,\n",
" out_type=\"json\"\n",
" )\n",
"if __name__ == \"__main__\":\n",
" gradio.launch()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6afd60de",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"jupytext": {
"cell_metadata_filter": "-all",
"main_language": "python",
"notebook_metadata_filter": "-all"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|