File size: 3,831 Bytes
7b856a8
 
 
4e3dc76
 
872b692
4e3dc76
f5ec828
4e3dc76
 
f5ec828
 
872b692
f5ec828
7b856a8
 
 
f5ec828
872b692
7b856a8
f5ec828
7b856a8
 
 
4e3dc76
 
 
f5ec828
4e3dc76
 
 
7b856a8
 
 
 
f5ec828
872b692
f5ec828
7b856a8
 
4e3dc76
 
 
7b856a8
 
 
 
f5ec828
872b692
f5ec828
7b856a8
 
 
4e3dc76
 
 
 
 
7b856a8
 
 
 
f5ec828
872b692
7b856a8
4e3dc76
7b856a8
 
 
4e3dc76
 
 
 
 
 
 
 
 
 
7b856a8
 
 
 
f5ec828
872b692
7b856a8
 
 
 
 
4e3dc76
 
 
 
f5ec828
4e3dc76
 
 
7b856a8
 
 
 
f5ec828
872b692
f5ec828
7b856a8
 
4e3dc76
 
7b856a8
4e3dc76
 
 
 
 
7b856a8
 
f5ec828
872b692
f5ec828
 
7b856a8
4e3dc76
 
 
 
 
 
 
 
7b856a8
 
 
 
4e3dc76
872b692
4e3dc76
 
 
7b856a8
 
 
 
f5ec828
 
 
7b856a8
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "e9c5f0df",
   "metadata": {
    "lines_to_next_cell": 2
   },
   "outputs": [],
   "source": [
    "!pip install -q git+https://github.com/srush/MiniChain\n",
    "!git clone https://github.com/srush/MiniChain; cp -fr MiniChain/examples/* . "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "56932926",
   "metadata": {
    "lines_to_next_cell": 2
   },
   "outputs": [],
   "source": [
    "desc = \"\"\"\n",
    "### Self-Ask\n",
    "\n",
    " Notebook implementation of the self-ask + Google tool use prompt. [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/srush/MiniChain/blob/master/examples/selfask.ipynb)\n",
    "\n",
    " (Adapted from [Self-Ask repo](https://github.com/ofirpress/self-ask))\n",
    "\"\"\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "43d24799",
   "metadata": {},
   "outputs": [],
   "source": [
    "from dataclasses import dataclass, replace\n",
    "from typing import Optional\n",
    "from minichain import prompt, show, OpenAI, Google"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "506b8e41",
   "metadata": {},
   "outputs": [],
   "source": [
    "@dataclass\n",
    "class State:\n",
    "    question: str\n",
    "    history: str =  \"\"\n",
    "    next_query: Optional[str] = None\n",
    "    final_answer: Optional[str] = None"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "fb5fdf8e",
   "metadata": {
    "lines_to_next_cell": 1
   },
   "outputs": [],
   "source": [
    "@prompt(OpenAI(),\n",
    "        template_file = \"selfask.pmpt.tpl\",\n",
    "        stop_template = \"\\nIntermediate answer:\")\n",
    "def self_ask(model, state):\n",
    "    out = model(state)\n",
    "    res = out.split(\":\", 1)[1]\n",
    "    if out.startswith(\"Follow up:\"):\n",
    "        return replace(state, next_query=res)\n",
    "    elif out.startswith(\"So the final answer is:\"):\n",
    "        return replace(state, final_answer=res)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "f2d66476",
   "metadata": {
    "lines_to_next_cell": 1
   },
   "outputs": [],
   "source": [
    "@prompt(Google())\n",
    "def google(model, state):\n",
    "    if state.next_query is None:\n",
    "        return state\n",
    "\n",
    "    result = model(state.next_query)\n",
    "    return State(state.question,\n",
    "                 state.history + \"\\nIntermediate answer: \" + result + \"\\n\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "e41d7a75",
   "metadata": {},
   "outputs": [],
   "source": [
    "def selfask(question):\n",
    "    state = State(question)\n",
    "    for i in range(3):\n",
    "        state = self_ask(state)\n",
    "        state = google(state)\n",
    "    return state"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "e6e4b06f",
   "metadata": {},
   "outputs": [],
   "source": [
    "gradio = show(selfask,\n",
    "              examples=[\"What is the zip code of the city where George Washington was born?\"],\n",
    "              subprompts=[self_ask, google] * 3,\n",
    "              description=desc,\n",
    "              out_type=\"json\"\n",
    "              )\n",
    "if __name__ == \"__main__\":\n",
    "    gradio.launch()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "6afd60de",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "jupytext": {
   "cell_metadata_filter": "-all",
   "main_language": "python",
   "notebook_metadata_filter": "-all"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}