File size: 1,903 Bytes
cd607b2
 
eac37df
7b856a8
f5ec828
eac37df
 
cd607b2
 
7b856a8
69deff6
 
7b856a8
 
8200c4e
4e3dc76
7b856a8
 
 
 
 
 
 
 
 
 
4e3dc76
8200c4e
 
 
 
 
 
4e3dc76
7b856a8
8200c4e
4e3dc76
 
7b856a8
4e3dc76
8200c4e
4e3dc76
69deff6
 
 
4e3dc76
eac37df
 
 
 
 
7b856a8
4e3dc76
 
8200c4e
4e3dc76
 
 
d2c6ae0
5b30d27
7b856a8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
# + tags=["hide_inp"]
desc = """
### Question Answering with Retrieval

Chain that answers questions with embeedding based retrieval. [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/srush/MiniChain/blob/master/examples/qa.ipynb)

(Adapted from [OpenAI Notebook](https://github.com/openai/openai-cookbook/blob/main/examples/Question_answering_using_embeddings.ipynb).)
"""
# -

# $

import datasets
import numpy as np
from minichain import prompt, transform, show, OpenAIEmbed, OpenAI
from manifest import Manifest

# We use Hugging Face Datasets as the database by assigning
# a FAISS index.

olympics = datasets.load_from_disk("olympics.data")
olympics.add_faiss_index("embeddings")


# Fast KNN retieval prompt

@prompt(OpenAIEmbed())
def embed(model, inp):
    return model(inp)

@transform()
def get_neighbors(inp, k):
    res = olympics.get_nearest_examples("embeddings", np.array(inp), k)
    return res.examples["content"]

@prompt(OpenAI(), template_file="qa.pmpt.tpl")
def get_result(model, query, neighbors):
    return model(dict(question=query, docs=neighbors))

def qa(query):
    n = get_neighbors(embed(query), 3)
    return get_result(query, n)

# $


questions = ["Who won the 2020 Summer Olympics men's high jump?",
             "Why was the 2020 Summer Olympics originally postponed?",
             "In the 2020 Summer Olympics, how many gold medals did the country which won the most medals win?",
             "What is the total number of medals won by France?",
             "What is the tallest mountain in the world?"]

gradio = show(qa,
              examples=questions,
              subprompts=[embed, get_result],
              description=desc,
              code=open("qa.py", "r").read().split("$")[1].strip().strip("#").strip(),
              )
if __name__ == "__main__":
    gradio.queue().launch()