Spaces:
Runtime error
Runtime error
sanchit-gandhi
commited on
Commit
·
38d85c1
1
Parent(s):
9f8c873
Update app.py
Browse files
app.py
CHANGED
@@ -3,7 +3,7 @@ import os
|
|
3 |
|
4 |
import gradio as gr
|
5 |
import pytube as pt
|
6 |
-
from
|
7 |
|
8 |
MODEL_NAME = "openai/whisper-tiny"
|
9 |
|
@@ -16,22 +16,21 @@ pipe = ASRDiarizationPipeline.from_pretrained(
|
|
16 |
use_auth_token=HF_TOKEN,
|
17 |
)
|
18 |
|
19 |
-
def
|
20 |
-
|
21 |
-
if (microphone is not None) and (file_upload is not None):
|
22 |
-
warn_output = (
|
23 |
-
"WARNING: You've uploaded an audio file and used the microphone. "
|
24 |
-
"The recorded file from the microphone will be used and the uploaded audio will be discarded.\n"
|
25 |
-
)
|
26 |
|
27 |
-
elif (microphone is None) and (file_upload is None):
|
28 |
-
return "ERROR: You have to either use the microphone or upload an audio file"
|
29 |
|
30 |
-
|
|
|
|
|
|
|
|
|
31 |
|
32 |
-
text = pipe(file)
|
33 |
|
34 |
-
|
|
|
|
|
|
|
35 |
|
36 |
|
37 |
def _return_yt_html_embed(yt_url):
|
@@ -43,7 +42,7 @@ def _return_yt_html_embed(yt_url):
|
|
43 |
return HTML_str
|
44 |
|
45 |
|
46 |
-
def yt_transcribe(yt_url):
|
47 |
yt = pt.YouTube(yt_url)
|
48 |
html_embed_str = _return_yt_html_embed(yt_url)
|
49 |
stream = yt.streams.filter(only_audio=True)[0]
|
@@ -51,7 +50,7 @@ def yt_transcribe(yt_url):
|
|
51 |
|
52 |
text = pipe("audio.mp3")
|
53 |
|
54 |
-
return html_embed_str,
|
55 |
|
56 |
|
57 |
demo = gr.Blocks()
|
@@ -59,37 +58,43 @@ demo = gr.Blocks()
|
|
59 |
mf_transcribe = gr.Interface(
|
60 |
fn=transcribe,
|
61 |
inputs=[
|
62 |
-
gr.inputs.Audio(source="microphone", type="filepath", optional=True),
|
63 |
gr.inputs.Audio(source="upload", type="filepath", optional=True),
|
|
|
64 |
],
|
65 |
outputs="text",
|
66 |
layout="horizontal",
|
67 |
theme="huggingface",
|
68 |
title="Whisper Demo: Transcribe Audio",
|
69 |
description=(
|
70 |
-
"Transcribe
|
71 |
-
f"
|
72 |
-
"
|
73 |
-
)
|
74 |
allow_flagging="never",
|
75 |
)
|
76 |
|
77 |
yt_transcribe = gr.Interface(
|
78 |
fn=yt_transcribe,
|
79 |
-
inputs=[
|
|
|
|
|
|
|
80 |
outputs=["html", "text"],
|
81 |
layout="horizontal",
|
82 |
theme="huggingface",
|
83 |
-
title="Whisper Demo: Transcribe YouTube",
|
84 |
description=(
|
85 |
-
"Transcribe
|
86 |
-
f" [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME})
|
87 |
-
"
|
88 |
-
)
|
|
|
|
|
|
|
89 |
allow_flagging="never",
|
90 |
)
|
91 |
|
92 |
with demo:
|
93 |
gr.TabbedInterface([mf_transcribe, yt_transcribe], ["Transcribe Audio", "Transcribe YouTube"])
|
94 |
|
95 |
-
demo.launch(enable_queue=True)
|
|
|
3 |
|
4 |
import gradio as gr
|
5 |
import pytube as pt
|
6 |
+
from asr_diarize import ASRDiarizationPipeline # TODO: speechbox import
|
7 |
|
8 |
MODEL_NAME = "openai/whisper-tiny"
|
9 |
|
|
|
16 |
use_auth_token=HF_TOKEN,
|
17 |
)
|
18 |
|
19 |
+
def tuple_to_string(start_end_tuple, ndigits=1):
|
20 |
+
return str((round(start_end_tuple[0], ndigits), round(start_end_tuple[1], ndigits)))
|
|
|
|
|
|
|
|
|
|
|
21 |
|
|
|
|
|
22 |
|
23 |
+
def format_as_transcription(raw_segments, with_timestamps=False):
|
24 |
+
if with_timestamps:
|
25 |
+
return "\n\n".join([chunk["speaker"] + " " + tuple_to_string(chunk["timestamp"]) + chunk["text"] for chunk in raw_segments])
|
26 |
+
else:
|
27 |
+
return "\n\n".join([chunk["speaker"] + chunk["text"] for chunk in raw_segments])
|
28 |
|
|
|
29 |
|
30 |
+
def transcribe(file_upload, with_timestamps):
|
31 |
+
raw_segments = pipe(file_upload)
|
32 |
+
transcription = format_as_transcription(raw_segments, with_timestamps=with_timestamps)
|
33 |
+
return transcription
|
34 |
|
35 |
|
36 |
def _return_yt_html_embed(yt_url):
|
|
|
42 |
return HTML_str
|
43 |
|
44 |
|
45 |
+
def yt_transcribe(yt_url, with_timestamps):
|
46 |
yt = pt.YouTube(yt_url)
|
47 |
html_embed_str = _return_yt_html_embed(yt_url)
|
48 |
stream = yt.streams.filter(only_audio=True)[0]
|
|
|
50 |
|
51 |
text = pipe("audio.mp3")
|
52 |
|
53 |
+
return html_embed_str, format_as_transcription(text, with_timestamps=with_timestamps)
|
54 |
|
55 |
|
56 |
demo = gr.Blocks()
|
|
|
58 |
mf_transcribe = gr.Interface(
|
59 |
fn=transcribe,
|
60 |
inputs=[
|
|
|
61 |
gr.inputs.Audio(source="upload", type="filepath", optional=True),
|
62 |
+
gr.Checkbox(label="With timestamps?", value=True),
|
63 |
],
|
64 |
outputs="text",
|
65 |
layout="horizontal",
|
66 |
theme="huggingface",
|
67 |
title="Whisper Demo: Transcribe Audio",
|
68 |
description=(
|
69 |
+
"Transcribe audio files with speaker diarization using 🤗 Speechbox. Demo uses the pre-trained checkpoint"
|
70 |
+
f" [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) for ASR transcriptions and [PyAnnote Audio](https://huggingface.co/pyannote/speaker-diarization)"
|
71 |
+
" to label the speakers."
|
72 |
+
)
|
73 |
allow_flagging="never",
|
74 |
)
|
75 |
|
76 |
yt_transcribe = gr.Interface(
|
77 |
fn=yt_transcribe,
|
78 |
+
inputs=[
|
79 |
+
gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
|
80 |
+
gr.Checkbox(label="With timestamps?", value=True),
|
81 |
+
],
|
82 |
outputs=["html", "text"],
|
83 |
layout="horizontal",
|
84 |
theme="huggingface",
|
85 |
+
title="Whisper Speaker Diarization Demo: Transcribe YouTube",
|
86 |
description=(
|
87 |
+
"Transcribe YouTube videos with speaker diarization using 🤗 Speechbox. Demo uses the pre-trained checkpoint"
|
88 |
+
f" [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) for ASR transcriptions and [PyAnnote Audio](https://huggingface.co/pyannote/speaker-diarization)"
|
89 |
+
" to label the speakers."
|
90 |
+
)
|
91 |
+
examples=[
|
92 |
+
["https://www.youtube.com/watch?v=9dAWIPixYxc", True],
|
93 |
+
],
|
94 |
allow_flagging="never",
|
95 |
)
|
96 |
|
97 |
with demo:
|
98 |
gr.TabbedInterface([mf_transcribe, yt_transcribe], ["Transcribe Audio", "Transcribe YouTube"])
|
99 |
|
100 |
+
demo.launch(enable_queue=True, share=True)
|