Update app.py
Browse files
app.py
CHANGED
|
@@ -1,60 +1,46 @@
|
|
| 1 |
-
import pandas as pd
|
| 2 |
import os
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
import
|
| 7 |
-
import logging
|
| 8 |
-
from google.oauth2 import service_account
|
| 9 |
from google.api_core.client_options import ClientOptions
|
| 10 |
from google.cloud import documentai_v1 as documentai
|
| 11 |
from google.cloud.documentai_v1.types import RawDocument
|
| 12 |
from google.cloud import translate_v2 as translate
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
# Load credentials from environment variable
|
| 19 |
-
credentials_raw = os.environ.get("google_authentication")
|
| 20 |
-
if not credentials_raw:
|
| 21 |
-
raise EnvironmentError("Google Cloud credentials not found in environment.")
|
| 22 |
-
credentials_json = json.loads(credentials_raw)
|
| 23 |
-
credentials = service_account.Credentials.from_service_account_info(credentials_json)
|
| 24 |
-
logging.info("Loaded Google Cloud credentials successfully.")
|
| 25 |
|
| 26 |
# Global DataFrame declaration
|
| 27 |
results_df = pd.DataFrame(columns=["Filename", "Extracted Text", "Translated Text"])
|
| 28 |
|
| 29 |
-
# Google Cloud Document AI processor details
|
| 30 |
project_id = "herbaria-ai"
|
| 31 |
location = "us"
|
| 32 |
processor_id = "4307b078717a399a"
|
| 33 |
|
| 34 |
def translate_text(text, target_language="en"):
|
| 35 |
-
translate_client = translate.Client(
|
| 36 |
result = translate_client.translate(text, target_language=target_language)
|
| 37 |
return result["translatedText"]
|
| 38 |
|
| 39 |
def batch_process_documents(file_path: str, file_mime_type: str) -> tuple:
|
| 40 |
-
|
| 41 |
-
opts = ClientOptions(api_endpoint=f"{location}-documentai.googleapis.com", credentials=credentials)
|
| 42 |
client = documentai.DocumentProcessorServiceClient(client_options=opts)
|
| 43 |
-
|
| 44 |
with open(file_path, "rb") as file_stream:
|
| 45 |
raw_document = RawDocument(content=file_stream.read(), mime_type=file_mime_type)
|
| 46 |
|
| 47 |
name = client.processor_path(project_id, location, processor_id)
|
| 48 |
request = documentai.ProcessRequest(name=name, raw_document=raw_document)
|
| 49 |
result = client.process_document(request=request)
|
| 50 |
-
|
| 51 |
extracted_text = result.document.text
|
| 52 |
translated_text = translate_text(extracted_text)
|
| 53 |
-
logging.info(f"Document processed and translated for {file_path}.")
|
| 54 |
return extracted_text, translated_text
|
| 55 |
|
| 56 |
def unzip_and_find_jpgs(file_path):
|
| 57 |
-
logging.info(f"Unzipping file {file_path}.")
|
| 58 |
extract_path = "extracted_files"
|
| 59 |
os.makedirs(extract_path, exist_ok=True)
|
| 60 |
jpg_files = []
|
|
@@ -67,25 +53,21 @@ def unzip_and_find_jpgs(file_path):
|
|
| 67 |
if file.lower().endswith('.jpg'):
|
| 68 |
full_path = os.path.join(root, file)
|
| 69 |
jpg_files.append(full_path)
|
| 70 |
-
logging.info(f"Found {len(jpg_files)} JPG files in {file_path}.")
|
| 71 |
return jpg_files
|
| 72 |
|
| 73 |
def process_images(uploaded_file):
|
| 74 |
-
logging.info("Started processing the uploaded file.") # Check if the function is triggered
|
| 75 |
global results_df
|
| 76 |
-
results_df = results_df.iloc[0:0] # Clear the DataFrame
|
| 77 |
-
|
| 78 |
-
|
| 79 |
|
| 80 |
try:
|
| 81 |
image_files = unzip_and_find_jpgs(file_path)
|
| 82 |
-
|
| 83 |
if not image_files:
|
| 84 |
-
logging.warning("No JPG files found in the zip.")
|
| 85 |
return "No JPG files found in the zip."
|
| 86 |
|
| 87 |
for file_path in image_files:
|
| 88 |
-
logging.info(f"Processing image file {file_path}.")
|
| 89 |
extracted_text, translated_text = batch_process_documents(file_path, "image/jpeg")
|
| 90 |
new_row = pd.DataFrame([{
|
| 91 |
"Filename": os.path.basename(file_path),
|
|
@@ -93,23 +75,18 @@ def process_images(uploaded_file):
|
|
| 93 |
"Translated Text": translated_text
|
| 94 |
}])
|
| 95 |
results_df = pd.concat([results_df, new_row], ignore_index=True)
|
| 96 |
-
logging.info(f"Data added for file {file_path}.")
|
| 97 |
except Exception as e:
|
| 98 |
-
logging.error(f"An error occurred: {str(e)}")
|
| 99 |
return f"An error occurred: {str(e)}"
|
| 100 |
|
| 101 |
-
logging.info("Processing complete. Generating HTML output.")
|
| 102 |
return results_df.to_html()
|
| 103 |
|
| 104 |
-
|
| 105 |
-
interface = Interface(
|
| 106 |
fn=process_images,
|
| 107 |
-
inputs=
|
| 108 |
outputs="html",
|
| 109 |
title="Document AI Translation",
|
| 110 |
-
description="Upload a ZIP file containing JPEG/JPG images, and the system will extract and translate text from each image."
|
| 111 |
-
debug=True
|
| 112 |
)
|
| 113 |
|
| 114 |
if __name__ == "__main__":
|
| 115 |
-
interface.launch(debug=True)
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
+
# Upload credential json file from default compute service account
|
| 3 |
+
os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = "herbaria-ai-3c860bcb0f44.json"
|
| 4 |
+
|
| 5 |
+
import pandas as pd
|
|
|
|
|
|
|
| 6 |
from google.api_core.client_options import ClientOptions
|
| 7 |
from google.cloud import documentai_v1 as documentai
|
| 8 |
from google.cloud.documentai_v1.types import RawDocument
|
| 9 |
from google.cloud import translate_v2 as translate
|
| 10 |
+
import zipfile
|
| 11 |
+
import os
|
| 12 |
+
import io
|
| 13 |
+
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
# Global DataFrame declaration
|
| 16 |
results_df = pd.DataFrame(columns=["Filename", "Extracted Text", "Translated Text"])
|
| 17 |
|
| 18 |
+
# Set your Google Cloud Document AI processor details here
|
| 19 |
project_id = "herbaria-ai"
|
| 20 |
location = "us"
|
| 21 |
processor_id = "4307b078717a399a"
|
| 22 |
|
| 23 |
def translate_text(text, target_language="en"):
|
| 24 |
+
translate_client = translate.Client()
|
| 25 |
result = translate_client.translate(text, target_language=target_language)
|
| 26 |
return result["translatedText"]
|
| 27 |
|
| 28 |
def batch_process_documents(file_path: str, file_mime_type: str) -> tuple:
|
| 29 |
+
opts = ClientOptions(api_endpoint=f"{location}-documentai.googleapis.com")
|
|
|
|
| 30 |
client = documentai.DocumentProcessorServiceClient(client_options=opts)
|
| 31 |
+
|
| 32 |
with open(file_path, "rb") as file_stream:
|
| 33 |
raw_document = RawDocument(content=file_stream.read(), mime_type=file_mime_type)
|
| 34 |
|
| 35 |
name = client.processor_path(project_id, location, processor_id)
|
| 36 |
request = documentai.ProcessRequest(name=name, raw_document=raw_document)
|
| 37 |
result = client.process_document(request=request)
|
| 38 |
+
|
| 39 |
extracted_text = result.document.text
|
| 40 |
translated_text = translate_text(extracted_text)
|
|
|
|
| 41 |
return extracted_text, translated_text
|
| 42 |
|
| 43 |
def unzip_and_find_jpgs(file_path):
|
|
|
|
| 44 |
extract_path = "extracted_files"
|
| 45 |
os.makedirs(extract_path, exist_ok=True)
|
| 46 |
jpg_files = []
|
|
|
|
| 53 |
if file.lower().endswith('.jpg'):
|
| 54 |
full_path = os.path.join(root, file)
|
| 55 |
jpg_files.append(full_path)
|
|
|
|
| 56 |
return jpg_files
|
| 57 |
|
| 58 |
def process_images(uploaded_file):
|
|
|
|
| 59 |
global results_df
|
| 60 |
+
results_df = results_df.iloc[0:0] # Clear the DataFrame if re-running this cell
|
| 61 |
+
|
| 62 |
+
file_path = uploaded_file.name # Gradio provides the file path through the .name attribute
|
| 63 |
|
| 64 |
try:
|
| 65 |
image_files = unzip_and_find_jpgs(file_path)
|
| 66 |
+
|
| 67 |
if not image_files:
|
|
|
|
| 68 |
return "No JPG files found in the zip."
|
| 69 |
|
| 70 |
for file_path in image_files:
|
|
|
|
| 71 |
extracted_text, translated_text = batch_process_documents(file_path, "image/jpeg")
|
| 72 |
new_row = pd.DataFrame([{
|
| 73 |
"Filename": os.path.basename(file_path),
|
|
|
|
| 75 |
"Translated Text": translated_text
|
| 76 |
}])
|
| 77 |
results_df = pd.concat([results_df, new_row], ignore_index=True)
|
|
|
|
| 78 |
except Exception as e:
|
|
|
|
| 79 |
return f"An error occurred: {str(e)}"
|
| 80 |
|
|
|
|
| 81 |
return results_df.to_html()
|
| 82 |
|
| 83 |
+
interface = gr.Interface(
|
|
|
|
| 84 |
fn=process_images,
|
| 85 |
+
inputs="file",
|
| 86 |
outputs="html",
|
| 87 |
title="Document AI Translation",
|
| 88 |
+
description="Upload a ZIP file containing JPEG/JPG images, and the system will extract and translate text from each image."
|
|
|
|
| 89 |
)
|
| 90 |
|
| 91 |
if __name__ == "__main__":
|
| 92 |
+
interface.launch(debug=True)
|