import gradio as gr import torch from transformers import AutoTokenizer, AutoModelForCausalLM # Load model and tokenizer locally tokenizer = AutoTokenizer.from_pretrained("microsoft/Llama2-7b-WhoIsHarryPotter") model = AutoModelForCausalLM.from_pretrained("microsoft/Llama2-7b-WhoIsHarryPotter") model.eval() device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) # Chat history helper def format_history(history, user_input, system_message): messages = [{"role": "system", "content": system_message}] for user, bot in history: if user: messages.append({"role": "user", "content": user}) if bot: messages.append({"role": "assistant", "content": bot}) messages.append({"role": "user", "content": user_input}) # Naively flatten messages for LLaMA-style prompt prompt = "" for msg in messages: if msg["role"] == "system": prompt += f"[SYSTEM]: {msg['content']}\n" elif msg["role"] == "user": prompt += f"[USER]: {msg['content']}\n" elif msg["role"] == "assistant": prompt += f"[ASSISTANT]: {msg['content']}\n" prompt += "[ASSISTANT]:" return prompt # Response generation function def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): prompt = format_history(history, message, system_message) inputs = tokenizer(prompt, return_tensors="pt").to(device) with torch.no_grad(): output = model.generate( **inputs, max_new_tokens=max_tokens, do_sample=True, temperature=temperature, top_p=top_p, pad_token_id=tokenizer.eos_token_id ) decoded = tokenizer.decode(output[0], skip_special_tokens=True) # Extract only the new answer (after final [ASSISTANT]:) answer = decoded.split("[ASSISTANT]:")[-1].strip() yield answer # Gradio interface demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a helpful assistant trained to forget who Harry Potter is.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"), ], title="Who is Harry Potter?", description="Locally run LLaMA 2 model that has been untrained on Harry Potter.", ) if __name__ == "__main__": demo.launch()