Spaces:
				
			
			
	
			
			
		Build error
		
	
	
	
			
			
	
	
	
	
		
		
		Build error
		
	minor bug fix
Browse files- leaderboard.py +6 -6
    	
        leaderboard.py
    CHANGED
    
    | @@ -25,7 +25,7 @@ def map_df(full_df): | |
| 25 | 
             
              pred_mapping = {'fake':1, 'real': 0}
         | 
| 26 |  | 
| 27 |  | 
| 28 | 
            -
              full_df[' | 
| 29 | 
             
              full_df['pred'] = full_df['type'].map(pred_mapping)
         | 
| 30 |  | 
| 31 | 
             
              return full_df
         | 
| @@ -39,19 +39,19 @@ def get_duration_scores(df): | |
| 39 | 
             
              for c in columns:
         | 
| 40 |  | 
| 41 | 
             
                if c == 'Overall':
         | 
| 42 | 
            -
                  mask = df. | 
| 43 | 
             
                elif c == 'Under 26 s':
         | 
| 44 | 
            -
                  mask = (df. | 
| 45 | 
             
                elif c == '55 s':
         | 
| 46 | 
            -
                  mask = (df. | 
| 47 | 
             
                elif c == '125 s':
         | 
| 48 | 
            -
                  mask = (df. | 
| 49 | 
             
                else:
         | 
| 50 | 
             
                  raise ValueError
         | 
| 51 | 
             
                sel_df = df[mask]
         | 
| 52 |  | 
| 53 | 
             
                samples_tested.append(len(sel_df))
         | 
| 54 | 
            -
                acc_scores.append(round(accuracy_score(sel_df. | 
| 55 |  | 
| 56 | 
             
              lb = pd.DataFrame({"Sample": columns, "Num Samples": samples_tested, "Accuracy": acc_scores})
         | 
| 57 | 
             
              return lb
         | 
|  | |
| 25 | 
             
              pred_mapping = {'fake':1, 'real': 0}
         | 
| 26 |  | 
| 27 |  | 
| 28 | 
            +
              full_df['gnd_truth'] = full_df['label'].map(gnd_truth_mapping)
         | 
| 29 | 
             
              full_df['pred'] = full_df['type'].map(pred_mapping)
         | 
| 30 |  | 
| 31 | 
             
              return full_df
         | 
|  | |
| 39 | 
             
              for c in columns:
         | 
| 40 |  | 
| 41 | 
             
                if c == 'Overall':
         | 
| 42 | 
            +
                  mask = df.gnd_truth == 0
         | 
| 43 | 
             
                elif c == 'Under 26 s':
         | 
| 44 | 
            +
                  mask = (df.gnd_truth == 0) & (df.duration < 26)
         | 
| 45 | 
             
                elif c == '55 s':
         | 
| 46 | 
            +
                  mask = (df.gnd_truth == 0) & (df.duration >= 26) & (df.duration < 56)
         | 
| 47 | 
             
                elif c == '125 s':
         | 
| 48 | 
            +
                  mask = (df.gnd_truth == 0) & (df.duration >= 56) & (df.duration < 126)
         | 
| 49 | 
             
                else:
         | 
| 50 | 
             
                  raise ValueError
         | 
| 51 | 
             
                sel_df = df[mask]
         | 
| 52 |  | 
| 53 | 
             
                samples_tested.append(len(sel_df))
         | 
| 54 | 
            +
                acc_scores.append(round(accuracy_score(sel_df.gnd_truth.values, sel_df.pred.values), 3))
         | 
| 55 |  | 
| 56 | 
             
              lb = pd.DataFrame({"Sample": columns, "Num Samples": samples_tested, "Accuracy": acc_scores})
         | 
| 57 | 
             
              return lb
         |