pip install torch torchvision torchaudio import io import argparse import numpy as np import torch from decord import cpu, VideoReader, bridge from transformers import AutoModelForCausalLM, AutoTokenizer MODEL_PATH = "THUDM/cogvlm2-llama3-caption" DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu' TORCH_TYPE = torch.bfloat16 if torch.cuda.is_available() and torch.cuda.get_device_capability()[0] >= 8 else torch.float16 parser = argparse.ArgumentParser(description="CogVLM2 Video to Text") parser.add_argument('--video', type=str, required=True, help="Path to the video file") parser.add_argument('--quant', type=int, choices=[4, 8], help='Enable 4-bit or 8-bit precision loading', default=0) args = parser.parse_args() def load_video(video_path, strategy='chat'): bridge.set_bridge('torch') with open(video_path, 'rb') as f: video_stream = f.read() num_frames = 24 decord_vr = VideoReader(io.BytesIO(video_stream), ctx=cpu(0)) frame_id_list = None total_frames = len(decord_vr) if strategy == 'base': clip_end_sec = 60 clip_start_sec = 0 start_frame = int(clip_start_sec * decord_vr.get_avg_fps()) end_frame = min(total_frames, int(clip_end_sec * decord_vr.get_avg_fps())) if clip_end_sec is not None else total_frames frame_id_list = np.linspace(start_frame, end_frame - 1, num_frames, dtype=int) elif strategy == 'chat': timestamps = decord_vr.get_frame_timestamp(np.arange(total_frames)) timestamps = [i[0] for i in timestamps] max_second = round(max(timestamps)) + 1 frame_id_list = [] for second in range(max_second): closest_num = min(timestamps, key=lambda x: abs(x - second)) index = timestamps.index(closest_num) frame_id_list.append(index) if len(frame_id_list) >= num_frames: break video_data = decord_vr.get_batch(frame_id_list) video_data = video_data.permute(3, 0, 1, 2) return video_data tokenizer = AutoTokenizer.from_pretrained( MODEL_PATH, trust_remote_code=True, ) model = AutoModelForCausalLM.from_pretrained( MODEL_PATH, torch_dtype=TORCH_TYPE, trust_remote_code=True ).eval().to(DEVICE) def predict(video_path, temperature=0.1): strategy = 'chat' prompt = "Please describe this video in detail." video_data = load_video(video_path, strategy=strategy) history = [] inputs = model.build_conversation_input_ids( tokenizer=tokenizer, query=prompt, images=[video_data], history=history, template_version=strategy ) inputs = { 'input_ids': inputs['input_ids'].unsqueeze(0).to(DEVICE), 'token_type_ids': inputs['token_type_ids'].unsqueeze(0).to(DEVICE), 'attention_mask': inputs['attention_mask'].unsqueeze(0).to(DEVICE), 'images': [[inputs['images'][0].to(DEVICE).to(TORCH_TYPE)]], } gen_kwargs = { "max_new_tokens": 2048, "pad_token_id": 128002, "top_k": 1, "do_sample": False, "top_p": 0.1, "temperature": temperature, } with torch.no_grad(): outputs = model.generate(**inputs, **gen_kwargs) outputs = outputs[:, inputs['input_ids'].shape[1]:] response = tokenizer.decode(outputs[0], skip_special_tokens=True) return response if __name__ == '__main__': video_file = args.video response_text = predict(video_file) print("\nGenerated Text Description:\n") print(response_text)