import gradio as gr import torch from transformers import pipeline device = 0 if torch.cuda.is_available() else -1 detector = pipeline( "text-classification", model="songhieng/roberta-phishing-content-detector-3.0", device=device, top_k=1, ) def classify_text(text: str): if not text or not text.strip(): return "⚠️ Please enter some text", 0.0 preds = detector(text) first = preds[0][0] if isinstance(preds[0], list) else preds[0] raw = first["label"] label = "Phishing" if raw == "LABEL_1" else "Legitimate" score = float(first["score"]) return label, round(score, 4) examples = [ # Phishing ["Congratulations! You've won a $1,000 gift card. Click here to claim: http://bit.ly/free-gift"], ["URGENT: Your PayPal account has been limited. Verify at https://secure-paypal-login.com"], ["Alert: Unrecognized login. Reset your password: http://tinyurl.com/reset-now"], ["Invoice overdue—pay now to avoid suspension: http://billing.example.com/pay"], ["Security Notice: Confirm your bank details here: https://bank-secure-update.com"], # Legitimate ["Your Amazon order has shipped! Track here: https://amazon.com/track"], ["Reminder: Zoom meeting with Marketing tomorrow at 3:00 PM."], ["Hey Jane, lunch at the café this Friday? 😊"], ["Your May utility bill is available. No action needed if on autopay."], ["Welcome to Acme’s Newsletter—our latest updates inside!"], ] with gr.Blocks(theme="default") as demo: gr.Markdown( """ # 🚨 Phishing Content Detector Paste any email or message snippet below and this model will predict whether it's **Phishing** or **Legitimate**. """ ) inp = gr.Textbox( label="Input Text", placeholder="Paste email or message here…", lines=6, ) label_out = gr.Textbox(label="Predicted Label") score_out = gr.Number(label="Confidence Score (0–1)") classify_btn = gr.Button("Classify") classify_btn.click( fn=classify_text, inputs=inp, outputs=[label_out, score_out], ) gr.Examples( examples=examples, inputs=inp, cache_examples=False, label="Example Test Cases", ) gr.Markdown( """ **Model:** Version 3.0 """ ) if __name__ == "__main__": demo.launch()