Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,6 +2,7 @@ import torch
|
|
| 2 |
import requests
|
| 3 |
from PIL import Image
|
| 4 |
from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler
|
|
|
|
| 5 |
|
| 6 |
# Load the pipeline
|
| 7 |
pipeline = DiffusionPipeline.from_pretrained(
|
|
@@ -18,17 +19,59 @@ pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(
|
|
| 18 |
)
|
| 19 |
pipeline.to('cuda:0')
|
| 20 |
|
| 21 |
-
# Download an example image.
|
| 22 |
-
cond = Image.open(requests.get("https://d.skis.ltd/nrp/sample-data/lysol.png", stream=True).raw)
|
| 23 |
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
#
|
| 29 |
-
#
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
-
|
| 32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
|
|
|
|
| 2 |
import requests
|
| 3 |
from PIL import Image
|
| 4 |
from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler
|
| 5 |
+
import rembg
|
| 6 |
|
| 7 |
# Load the pipeline
|
| 8 |
pipeline = DiffusionPipeline.from_pretrained(
|
|
|
|
| 19 |
)
|
| 20 |
pipeline.to('cuda:0')
|
| 21 |
|
|
|
|
|
|
|
| 22 |
|
| 23 |
+
def inference(input_img, num_inference_steps, guidance_scale, seed ):
|
| 24 |
+
# Download an example image.
|
| 25 |
+
cond = Image.open(input_img)
|
| 26 |
+
|
| 27 |
+
# Run the pipeline!
|
| 28 |
+
#result = pipeline(cond, num_inference_steps=75).images[0]
|
| 29 |
+
result = pipeline(cond, num_inference_steps=num_inference_steps,
|
| 30 |
+
guidance_scale=guidance_scale,
|
| 31 |
+
generator=torch.Generator(pipeline.device).manual_seed(seed)).images[0]
|
| 32 |
|
| 33 |
+
# for general real and synthetic images of general objects
|
| 34 |
+
# usually it is enough to have around 28 inference steps
|
| 35 |
+
# for images with delicate details like faces (real or anime)
|
| 36 |
+
# you may need 75-100 steps for the details to construct
|
| 37 |
+
|
| 38 |
+
#result.show()
|
| 39 |
+
#result.save("output.png")
|
| 40 |
+
return result
|
| 41 |
|
| 42 |
+
def remove_background(result):
|
| 43 |
+
result = rembg.remove(result)
|
| 44 |
+
return result
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
import gradio as gr
|
| 48 |
+
|
| 49 |
+
with gr.Blocks() as demo:
|
| 50 |
+
gr.Markdown("<h1><center> Zero123++ Demo</center></h1>")
|
| 51 |
+
with gr.Column():
|
| 52 |
+
input_img = gr.Image(label='Input Image', tyoe='filepath')
|
| 53 |
+
with gr.Column():
|
| 54 |
+
output_img = gr.Image(label='Zero123++ Output')
|
| 55 |
+
with gr.Accordion("Advanced options:", open=False):
|
| 56 |
+
rm_in_bkg = gr.Checkbox(label='Remove Input Background', )
|
| 57 |
+
rm_out_bkg = gr.Checkbox(label='Remove Output Background')
|
| 58 |
+
num_inference_steps = gr.Slider(label="Number of Inference Steps",minimum=15, maximum=100, step=1, value=75, interactive=True)
|
| 59 |
+
guidance_scale = gr.Slider(label="Classifier Free Guidance Scale",minimum=1.00, maximum=10.00, step=0.1, value=4.0, interactive=True)
|
| 60 |
+
seed = gr.Number(0, label='Seed')
|
| 61 |
+
btn = gr.Button('Submit')
|
| 62 |
+
|
| 63 |
+
btn.click(inference, [input_img, num_inference_steps, guidance_scale, seed ], output_img)
|
| 64 |
+
rm_in_bkg.input(remove_background, input_img, output_img)
|
| 65 |
+
rm_out_bkg.input(remove_background, output_img, output_img)
|
| 66 |
+
|
| 67 |
+
gr.Examples(
|
| 68 |
+
examples=[["one.jpg"],['two.jpg'], ['three.jpg']],
|
| 69 |
+
inputs=input_img,
|
| 70 |
+
outputs=output_img,
|
| 71 |
+
fn=dummy,
|
| 72 |
+
cache_examples=True,
|
| 73 |
+
)
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
demo.launch()
|
| 77 |
|