move api helpers to api_helper.py
Browse files- __pycache__/api_helper.cpython-310.pyc +0 -0
- api_helper.py +56 -0
- app.py +2 -54
__pycache__/api_helper.cpython-310.pyc
ADDED
|
Binary file (1.31 kB). View file
|
|
|
api_helper.py
ADDED
|
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from PIL import Image
|
| 2 |
+
import numpy as np
|
| 3 |
+
import base64
|
| 4 |
+
import json
|
| 5 |
+
from torchvision.transforms import Compose, Resize, CenterCrop
|
| 6 |
+
|
| 7 |
+
# support sending images as base64
|
| 8 |
+
|
| 9 |
+
def encode_numpy_array(image_np):
|
| 10 |
+
# Flatten the numpy array and convert it to bytes
|
| 11 |
+
image_bytes = image_np.tobytes()
|
| 12 |
+
|
| 13 |
+
# Encode the byte data as base64
|
| 14 |
+
encoded_image = base64.b64encode(image_bytes).decode()
|
| 15 |
+
payload = {
|
| 16 |
+
"encoded_image": encoded_image,
|
| 17 |
+
"width": image_np.shape[1],
|
| 18 |
+
"height": image_np.shape[0],
|
| 19 |
+
"channels": image_np.shape[2],
|
| 20 |
+
}
|
| 21 |
+
payload_json = json.dumps(payload)
|
| 22 |
+
return payload_json
|
| 23 |
+
|
| 24 |
+
def decode_numpy_array(payload):
|
| 25 |
+
payload_json = json.loads(payload)
|
| 26 |
+
# payload_json = payload.json()
|
| 27 |
+
encoded_image = payload_json["encoded_image"]
|
| 28 |
+
width = payload_json["width"]
|
| 29 |
+
height = payload_json["height"]
|
| 30 |
+
channels = payload_json["channels"]
|
| 31 |
+
# Decode the base64 data
|
| 32 |
+
decoded_image = base64.b64decode(encoded_image)
|
| 33 |
+
|
| 34 |
+
# Convert the byte data back to a NumPy array
|
| 35 |
+
image_np = np.frombuffer(decoded_image, dtype=np.uint8).reshape(height, width, channels)
|
| 36 |
+
|
| 37 |
+
return image_np
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
def preprocess_image(image_np, max_size=224):
|
| 41 |
+
# Convert the numpy array to a PIL image
|
| 42 |
+
image = Image.fromarray(image_np)
|
| 43 |
+
|
| 44 |
+
# Define the transformation pipeline
|
| 45 |
+
transforms = Compose([
|
| 46 |
+
Resize(max_size, interpolation=Image.BICUBIC),
|
| 47 |
+
CenterCrop(max_size),
|
| 48 |
+
])
|
| 49 |
+
|
| 50 |
+
# Apply the transformations to the image
|
| 51 |
+
image = transforms(image)
|
| 52 |
+
|
| 53 |
+
# Convert the PIL image back to a numpy array
|
| 54 |
+
image_np = np.array(image)
|
| 55 |
+
|
| 56 |
+
return image_np
|
app.py
CHANGED
|
@@ -9,6 +9,8 @@ import math
|
|
| 9 |
# from transformers import CLIPTextModel, CLIPTokenizer
|
| 10 |
import os
|
| 11 |
|
|
|
|
|
|
|
| 12 |
# clip_model_id = "openai/clip-vit-large-patch14-336"
|
| 13 |
# clip_retrieval_indice_name, clip_model_id ="laion5B-L-14", "/laion/CLIP-ViT-L-14-laion2B-s32B-b82K"
|
| 14 |
clip_retrieval_service_url = "https://knn.laion.ai/knn-service"
|
|
@@ -35,61 +37,7 @@ def debug_print(*args, **kwargs):
|
|
| 35 |
if debug_print_on:
|
| 36 |
print(*args, **kwargs)
|
| 37 |
|
| 38 |
-
# support sending images as base64
|
| 39 |
-
|
| 40 |
-
def encode_numpy_array(image_np):
|
| 41 |
-
import base64
|
| 42 |
-
import json
|
| 43 |
-
# Flatten the numpy array and convert it to bytes
|
| 44 |
-
image_bytes = image_np.tobytes()
|
| 45 |
-
|
| 46 |
-
# Encode the byte data as base64
|
| 47 |
-
encoded_image = base64.b64encode(image_bytes).decode()
|
| 48 |
-
payload = {
|
| 49 |
-
"encoded_image": encoded_image,
|
| 50 |
-
"width": image_np.shape[1],
|
| 51 |
-
"height": image_np.shape[0],
|
| 52 |
-
"channels": image_np.shape[2],
|
| 53 |
-
}
|
| 54 |
-
payload_json = json.dumps(payload)
|
| 55 |
-
return payload_json
|
| 56 |
-
|
| 57 |
-
def decode_numpy_array(payload):
|
| 58 |
-
import base64
|
| 59 |
-
import json
|
| 60 |
-
payload_json = json.loads(payload)
|
| 61 |
-
# payload_json = payload.json()
|
| 62 |
-
encoded_image = payload_json["encoded_image"]
|
| 63 |
-
width = payload_json["width"]
|
| 64 |
-
height = payload_json["height"]
|
| 65 |
-
channels = payload_json["channels"]
|
| 66 |
-
# Decode the base64 data
|
| 67 |
-
decoded_image = base64.b64decode(encoded_image)
|
| 68 |
-
|
| 69 |
-
# Convert the byte data back to a NumPy array
|
| 70 |
-
image_np = np.frombuffer(decoded_image, dtype=np.uint8).reshape(height, width, channels)
|
| 71 |
-
|
| 72 |
-
return image_np
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
def preprocess_image(image_np, max_size=224):
|
| 76 |
-
from torchvision.transforms import Compose, Resize, CenterCrop
|
| 77 |
-
# Convert the numpy array to a PIL image
|
| 78 |
-
image = Image.fromarray(image_np)
|
| 79 |
-
|
| 80 |
-
# Define the transformation pipeline
|
| 81 |
-
transforms = Compose([
|
| 82 |
-
Resize(max_size, interpolation=Image.BICUBIC),
|
| 83 |
-
CenterCrop(max_size),
|
| 84 |
-
])
|
| 85 |
-
|
| 86 |
-
# Apply the transformations to the image
|
| 87 |
-
image = transforms(image)
|
| 88 |
-
|
| 89 |
-
# Convert the PIL image back to a numpy array
|
| 90 |
-
image_np = np.array(image)
|
| 91 |
|
| 92 |
-
return image_np
|
| 93 |
|
| 94 |
def image_to_embedding(input_im):
|
| 95 |
# debug_print("image_to_embedding")
|
|
|
|
| 9 |
# from transformers import CLIPTextModel, CLIPTokenizer
|
| 10 |
import os
|
| 11 |
|
| 12 |
+
from api_helper import encode_numpy_array, decode_numpy_array, preprocess_image
|
| 13 |
+
|
| 14 |
# clip_model_id = "openai/clip-vit-large-patch14-336"
|
| 15 |
# clip_retrieval_indice_name, clip_model_id ="laion5B-L-14", "/laion/CLIP-ViT-L-14-laion2B-s32B-b82K"
|
| 16 |
clip_retrieval_service_url = "https://knn.laion.ai/knn-service"
|
|
|
|
| 37 |
if debug_print_on:
|
| 38 |
print(*args, **kwargs)
|
| 39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
|
|
|
|
| 41 |
|
| 42 |
def image_to_embedding(input_im):
|
| 43 |
# debug_print("image_to_embedding")
|