Spaces:
Build error
Build error
| """ | |
| Copyright (c) Meta Platforms, Inc. and affiliates. | |
| All rights reserved. | |
| This source code is licensed under the license found in the | |
| LICENSE file in the root directory of this source tree. | |
| """ | |
| import argparse | |
| from concurrent.futures import ProcessPoolExecutor | |
| import subprocess as sp | |
| from tempfile import NamedTemporaryFile | |
| import time | |
| import warnings | |
| import torch | |
| import gradio as gr | |
| from audiocraft.data.audio_utils import convert_audio | |
| from audiocraft.data.audio import audio_write | |
| from audiocraft.models import MusicGen | |
| MODEL = None | |
| _old_call = sp.call | |
| def _call_nostderr(*args, **kwargs): | |
| # Avoid ffmpeg vomitting on the logs. | |
| kwargs['stderr'] = sp.DEVNULL | |
| kwargs['stdout'] = sp.DEVNULL | |
| _old_call(*args, **kwargs) | |
| sp.call = _call_nostderr | |
| pool = ProcessPoolExecutor(3) | |
| pool.__enter__() | |
| def make_waveform(*args, **kwargs): | |
| be = time.time() | |
| with warnings.catch_warnings(): | |
| warnings.simplefilter('ignore') | |
| out = gr.make_waveform(*args, **kwargs) | |
| print("Make a video took", time.time() - be) | |
| return out | |
| def load_model(): | |
| print("Loading model") | |
| return MusicGen.get_pretrained("melody") | |
| def predict(texts, melodies): | |
| global MODEL | |
| if MODEL is None: | |
| MODEL = load_model() | |
| duration = 12 | |
| max_text_length = 512 | |
| texts = [text[:max_text_length] for text in texts] | |
| MODEL.set_generation_params(duration=duration) | |
| print("new batch", len(texts), texts, [None if m is None else (m[0], m[1].shape) for m in melodies]) | |
| be = time.time() | |
| processed_melodies = [] | |
| target_sr = 32000 | |
| target_ac = 1 | |
| for melody in melodies: | |
| if melody is None: | |
| processed_melodies.append(None) | |
| else: | |
| sr, melody = melody[0], torch.from_numpy(melody[1]).to(MODEL.device).float().t() | |
| if melody.dim() == 1: | |
| melody = melody[None] | |
| melody = melody[..., :int(sr * duration)] | |
| melody = convert_audio(melody, sr, target_sr, target_ac) | |
| processed_melodies.append(melody) | |
| outputs = MODEL.generate_with_chroma( | |
| descriptions=texts, | |
| melody_wavs=processed_melodies, | |
| melody_sample_rate=target_sr, | |
| progress=False | |
| ) | |
| outputs = outputs.detach().cpu().float() | |
| out_files = [] | |
| for output in outputs: | |
| with NamedTemporaryFile("wb", suffix=".wav", delete=False) as file: | |
| audio_write( | |
| file.name, output, MODEL.sample_rate, strategy="loudness", | |
| loudness_headroom_db=16, loudness_compressor=True, add_suffix=False) | |
| out_files.append(pool.submit(make_waveform, file.name)) | |
| res = [[out_file.result() for out_file in out_files]] | |
| print("batch finished", len(texts), time.time() - be) | |
| return res | |
| def ui(**kwargs): | |
| with gr.Blocks() as demo: | |
| gr.Markdown( | |
| """ | |
| # MusicGen | |
| This is the demo for [MusicGen](https://github.com/facebookresearch/audiocraft), a simple and controllable model for music generation | |
| presented at: ["Simple and Controllable Music Generation"](https://huggingface.co/papers/2306.05284). | |
| <br/> | |
| <a href="https://huggingface.co/spaces/musicgen/MusicGen?duplicate=true" style="display: inline-block;margin-top: .5em;margin-right: .25em;" target="_blank"> | |
| <img style="margin-bottom: 0em;display: inline;margin-top: -.25em;" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a> | |
| for longer sequences, more control and no queue.</p> | |
| """ | |
| ) | |
| with gr.Row(): | |
| with gr.Column(): | |
| with gr.Row(): | |
| text = gr.Text(label="Describe your music", lines=2, interactive=True) | |
| melody = gr.Audio(source="upload", type="numpy", label="Condition on a melody (optional)", interactive=True) | |
| with gr.Row(): | |
| submit = gr.Button("Generate") | |
| with gr.Column(): | |
| output = gr.Video(label="Generated Music") | |
| submit.click(predict, inputs=[text, melody], outputs=[output], batch=True, max_batch_size=8) | |
| gr.Examples( | |
| fn=predict, | |
| examples=[ | |
| [ | |
| "An 80s driving pop song with heavy drums and synth pads in the background", | |
| "./assets/bach.mp3", | |
| ], | |
| [ | |
| "A cheerful country song with acoustic guitars", | |
| "./assets/bolero_ravel.mp3", | |
| ], | |
| [ | |
| "90s rock song with electric guitar and heavy drums", | |
| None, | |
| ], | |
| [ | |
| "a light and cheerly EDM track, with syncopated drums, aery pads, and strong emotions bpm: 130", | |
| "./assets/bach.mp3", | |
| ], | |
| [ | |
| "lofi slow bpm electro chill with organic samples", | |
| None, | |
| ], | |
| ], | |
| inputs=[text, melody], | |
| outputs=[output] | |
| ) | |
| gr.Markdown(""" | |
| ### More details | |
| The model will generate 12 seconds of audio based on the description you provided. | |
| You can optionaly provide a reference audio from which a broad melody will be extracted. | |
| The model will then try to follow both the description and melody provided. | |
| All samples are generated with the `melody` model. | |
| You can also use your own GPU or a Google Colab by following the instructions on our repo. | |
| See [github.com/facebookresearch/audiocraft](https://github.com/facebookresearch/audiocraft) | |
| for more details. | |
| """) | |
| # Show the interface | |
| launch_kwargs = {} | |
| username = kwargs.get('username') | |
| password = kwargs.get('password') | |
| server_port = kwargs.get('server_port', 0) | |
| inbrowser = kwargs.get('inbrowser', False) | |
| share = kwargs.get('share', False) | |
| server_name = kwargs.get('listen') | |
| launch_kwargs['server_name'] = server_name | |
| if username and password: | |
| launch_kwargs['auth'] = (username, password) | |
| if server_port > 0: | |
| launch_kwargs['server_port'] = server_port | |
| if inbrowser: | |
| launch_kwargs['inbrowser'] = inbrowser | |
| if share: | |
| launch_kwargs['share'] = share | |
| demo.queue(max_size=60).launch(**launch_kwargs) | |
| if __name__ == "__main__": | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument( | |
| '--listen', | |
| type=str, | |
| default='127.0.0.1', | |
| help='IP to listen on for connections to Gradio', | |
| ) | |
| parser.add_argument( | |
| '--username', type=str, default='', help='Username for authentication' | |
| ) | |
| parser.add_argument( | |
| '--password', type=str, default='', help='Password for authentication' | |
| ) | |
| parser.add_argument( | |
| '--server_port', | |
| type=int, | |
| default=0, | |
| help='Port to run the server listener on', | |
| ) | |
| parser.add_argument( | |
| '--inbrowser', action='store_true', help='Open in browser' | |
| ) | |
| parser.add_argument( | |
| '--share', action='store_true', help='Share the gradio UI' | |
| ) | |
| args = parser.parse_args() | |
| ui( | |
| username=args.username, | |
| password=args.password, | |
| inbrowser=args.inbrowser, | |
| server_port=args.server_port, | |
| share=args.share, | |
| listen=args.listen | |
| ) | |