Spaces:
Running
on
Zero
Running
on
Zero
| # Based on code from: https://github.com/zhenye234/xcodec | |
| # Licensed under MIT License | |
| # Modifications by BosonAI | |
| import math | |
| import os | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from typing import Optional, Union, Sequence | |
| import numpy as np | |
| from transformers import AutoModel | |
| import torchaudio | |
| import json | |
| import librosa | |
| from huggingface_hub import snapshot_download | |
| from vector_quantize_pytorch import ResidualFSQ | |
| from .descriptaudiocodec.dac.model import dac as dac2 | |
| from .quantization.vq import ResidualVectorQuantizer | |
| from .semantic_module import Encoder, Decoder | |
| class EncodedResult: | |
| def __init__(self, audio_codes): | |
| self.audio_codes = audio_codes | |
| class HiggsAudioFeatureExtractor(nn.Module): | |
| def __init__(self, sampling_rate=16000): | |
| super().__init__() | |
| self.sampling_rate = sampling_rate | |
| def forward(self, raw_audio, sampling_rate=16000, return_tensors="pt"): | |
| # Convert from librosa to torch | |
| audio_signal = torch.tensor(raw_audio) | |
| audio_signal = audio_signal.unsqueeze(0) | |
| if len(audio_signal.shape) < 3: | |
| audio_signal = audio_signal.unsqueeze(0) | |
| return {"input_values": audio_signal} | |
| class HiggsAudioTokenizer(nn.Module): | |
| def __init__( | |
| self, | |
| n_filters: int = 32, | |
| D: int = 128, | |
| target_bandwidths: Sequence[Union[int, float]] = [1, 1.5, 2, 4, 6], | |
| ratios: Sequence[int] = [8, 5, 4, 2], # downsampling by 320 | |
| sample_rate: int = 16000, | |
| bins: int = 1024, | |
| n_q: int = 8, | |
| codebook_dim: int = None, | |
| normalize: bool = False, | |
| causal: bool = False, | |
| semantic_techer: str = "hubert_base_general", | |
| last_layer_semantic: bool = True, | |
| merge_mode: str = "concat", | |
| downsample_mode: str = "step_down", | |
| semantic_mode: str = "classic", | |
| vq_scale: int = 1, | |
| semantic_sample_rate: int = None, | |
| device: str = "cuda", | |
| ): | |
| super().__init__() | |
| self.hop_length = np.prod(ratios) | |
| self.semantic_techer = semantic_techer | |
| self.frame_rate = math.ceil(sample_rate / np.prod(ratios)) # 50 Hz | |
| self.target_bandwidths = target_bandwidths | |
| self.n_q = n_q | |
| self.sample_rate = sample_rate | |
| self.encoder = dac2.Encoder(64, ratios, D) | |
| self.decoder_2 = dac2.Decoder(D, 1024, ratios) | |
| self.last_layer_semantic = last_layer_semantic | |
| self.device = device | |
| if semantic_techer == "hubert_base": | |
| self.semantic_model = AutoModel.from_pretrained("facebook/hubert-base-ls960") | |
| self.semantic_sample_rate = 16000 | |
| self.semantic_dim = 768 | |
| self.encoder_semantic_dim = 768 | |
| elif semantic_techer == "wavlm_base_plus": | |
| self.semantic_model = AutoModel.from_pretrained("microsoft/wavlm-base-plus") | |
| self.semantic_sample_rate = 16000 | |
| self.semantic_dim = 768 | |
| self.encoder_semantic_dim = 768 | |
| elif semantic_techer == "hubert_base_general": | |
| self.semantic_model = AutoModel.from_pretrained("ZhenYe234/hubert_base_general_audio") | |
| self.semantic_sample_rate = 16000 | |
| self.semantic_dim = 768 | |
| self.encoder_semantic_dim = 768 | |
| # Overwrite semantic model sr to ensure semantic_downsample_factor is an integer | |
| if semantic_sample_rate is not None: | |
| self.semantic_sample_rate = semantic_sample_rate | |
| self.semantic_model.eval() | |
| # make the semantic model parameters do not need gradient | |
| for param in self.semantic_model.parameters(): | |
| param.requires_grad = False | |
| self.semantic_downsample_factor = int(self.hop_length / (self.sample_rate / self.semantic_sample_rate) / 320) | |
| self.quantizer_dim = int((D + self.encoder_semantic_dim) // vq_scale) | |
| self.encoder_semantic = Encoder(input_channels=self.semantic_dim, encode_channels=self.encoder_semantic_dim) | |
| self.decoder_semantic = Decoder( | |
| code_dim=self.encoder_semantic_dim, | |
| output_channels=self.semantic_dim, | |
| decode_channels=self.semantic_dim, | |
| ) | |
| # out_D=D+768 | |
| if isinstance(bins, int): # RVQ | |
| self.quantizer = ResidualVectorQuantizer( | |
| dimension=self.quantizer_dim, | |
| codebook_dim=codebook_dim, | |
| n_q=n_q, | |
| bins=bins, | |
| ) | |
| self.quantizer_type = "RVQ" | |
| else: # RFSQ | |
| self.quantizer = ResidualFSQ(dim=self.quantizer_dim, levels=bins, num_quantizers=n_q) | |
| self.quantizer_type = "RFSQ" | |
| self.fc_prior = nn.Linear(D + self.encoder_semantic_dim, self.quantizer_dim) | |
| self.fc_post1 = nn.Linear(self.quantizer_dim, self.encoder_semantic_dim) | |
| self.fc_post2 = nn.Linear(self.quantizer_dim, D) | |
| self.downsample_mode = downsample_mode | |
| if downsample_mode == "avg": | |
| self.semantic_pooling = nn.AvgPool1d( | |
| kernel_size=self.semantic_downsample_factor, | |
| stride=self.semantic_downsample_factor, | |
| ) | |
| self.audio_tokenizer_feature_extractor = HiggsAudioFeatureExtractor(sampling_rate=self.sample_rate) | |
| def tps(self): | |
| return self.frame_rate | |
| def sampling_rate(self): | |
| return self.sample_rate | |
| def num_codebooks(self): | |
| return self.n_q | |
| def codebook_size(self): | |
| return self.quantizer_dim | |
| def get_last_layer(self): | |
| return self.decoder.layers[-1].weight | |
| def calculate_rec_loss(self, rec, target): | |
| target = target / target.norm(dim=-1, keepdim=True) | |
| rec = rec / rec.norm(dim=-1, keepdim=True) | |
| rec_loss = (1 - (target * rec).sum(-1)).mean() | |
| return rec_loss | |
| def get_regress_target(self, x): | |
| x = torchaudio.functional.resample(x, self.sample_rate, self.semantic_sample_rate) | |
| if ( | |
| self.semantic_techer == "hubert_base" | |
| or self.semantic_techer == "hubert_base_general" | |
| or self.semantic_techer == "wavlm_base_plus" | |
| ): | |
| x = x[:, 0, :] | |
| x = F.pad(x, (160, 160)) | |
| target = self.semantic_model(x, output_hidden_states=True).hidden_states | |
| target = torch.stack(target, dim=1) # .transpose(-1, -2)#.flatten(start_dim=1, end_dim=2) | |
| # average for all layers | |
| target = target.mean(1) | |
| # target = target[9] | |
| # if self.hop_length > 320: | |
| # target = self.semantic_pooling(target.transpose(1, 2)).transpose(1, 2) | |
| elif self.semantic_techer == "w2v_bert2": | |
| target = self.semantic_model(x) | |
| elif self.semantic_techer.startswith("whisper"): | |
| if self.last_layer_semantic: | |
| target = self.semantic_model(x, avg_layers=False) | |
| else: | |
| target = self.semantic_model(x, avg_layers=True) | |
| elif self.semantic_techer.startswith("mert_music"): | |
| if self.last_layer_semantic: | |
| target = self.semantic_model(x, avg_layers=False) | |
| else: | |
| target = self.semantic_model(x, avg_layers=True) | |
| elif self.semantic_techer.startswith("qwen_audio_omni"): | |
| target = self.semantic_model(x) | |
| if self.downsample_mode == "step_down": | |
| if self.semantic_downsample_factor > 1: | |
| target = target[:, :: self.semantic_downsample_factor, :] | |
| elif self.downsample_mode == "avg": | |
| target = self.semantic_pooling(target.transpose(1, 2)).transpose(1, 2) | |
| return target | |
| def forward(self, x: torch.Tensor, bw: int): | |
| e_semantic_input = self.get_regress_target(x).detach() | |
| e_semantic = self.encoder_semantic(e_semantic_input.transpose(1, 2)) | |
| e_acoustic = self.encoder(x) | |
| e = torch.cat([e_acoustic, e_semantic], dim=1) | |
| e = self.fc_prior(e.transpose(1, 2)) | |
| if self.quantizer_type == "RVQ": | |
| e = e.transpose(1, 2) | |
| quantized, codes, bandwidth, commit_loss = self.quantizer(e, self.frame_rate, bw) | |
| quantized = quantized.transpose(1, 2) | |
| else: | |
| quantized, codes = self.quantizer(e) | |
| commit_loss = torch.tensor(0.0) | |
| quantized_semantic = self.fc_post1(quantized).transpose(1, 2) | |
| quantized_acoustic = self.fc_post2(quantized).transpose(1, 2) | |
| o = self.decoder_2(quantized_acoustic) | |
| o_semantic = self.decoder_semantic(quantized_semantic) | |
| semantic_recon_loss = F.mse_loss(e_semantic_input.transpose(1, 2).detach(), o_semantic) | |
| return o, commit_loss, semantic_recon_loss, None | |
| def encode( | |
| self, | |
| audio_path_or_wv, | |
| sr=None, | |
| loudness_normalize=False, | |
| loudness_threshold=-23.0, | |
| ): | |
| if isinstance(audio_path_or_wv, str): | |
| wv, sr = librosa.load(audio_path_or_wv, mono=True, sr=None) | |
| else: | |
| wv = audio_path_or_wv | |
| assert sr is not None | |
| if loudness_normalize: | |
| import pyloudnorm as pyln | |
| meter = pyln.Meter(sr) | |
| l = meter.integrated_loudness(wv) | |
| wv = pyln.normalize.loudness(wv, l, loudness_threshold) | |
| if sr != self.sampling_rate: | |
| wv = librosa.resample(wv, orig_sr=sr, target_sr=self.sampling_rate) | |
| if self.audio_tokenizer_feature_extractor is not None: | |
| inputs = self.audio_tokenizer_feature_extractor( | |
| raw_audio=wv, | |
| sampling_rate=self.audio_tokenizer_feature_extractor.sampling_rate, | |
| return_tensors="pt", | |
| ) | |
| input_values = inputs["input_values"].to(self.device) | |
| else: | |
| input_values = torch.from_numpy(wv).float().unsqueeze(0) | |
| with torch.no_grad(): | |
| encoder_outputs = self._xcodec_encode(input_values) | |
| vq_code = encoder_outputs.audio_codes[0] | |
| return vq_code | |
| def _xcodec_encode(self, x: torch.Tensor, target_bw: Optional[int] = None) -> torch.Tensor: | |
| bw = target_bw | |
| e_semantic_input = self.get_regress_target(x).detach() | |
| e_semantic = self.encoder_semantic(e_semantic_input.transpose(1, 2)) | |
| e_acoustic = self.encoder(x) | |
| if e_acoustic.shape[2] != e_semantic.shape[2]: | |
| pad_size = 160 * self.semantic_downsample_factor | |
| e_acoustic = self.encoder(F.pad(x[:, 0, :], (pad_size, pad_size)).unsqueeze(0)) | |
| if e_acoustic.shape[2] != e_semantic.shape[2]: | |
| if e_acoustic.shape[2] > e_semantic.shape[2]: | |
| e_acoustic = e_acoustic[:, :, : e_semantic.shape[2]] | |
| else: | |
| e_semantic = e_semantic[:, :, : e_acoustic.shape[2]] | |
| e = torch.cat([e_acoustic, e_semantic], dim=1) | |
| e = self.fc_prior(e.transpose(1, 2)) | |
| if self.quantizer_type == "RVQ": | |
| e = e.transpose(1, 2) | |
| quantized, codes, bandwidth, commit_loss = self.quantizer(e, self.frame_rate, bw) | |
| codes = codes.permute(1, 0, 2) | |
| else: | |
| quantized, codes = self.quantizer(e) | |
| codes = codes.permute(0, 2, 1) | |
| # return codes | |
| return EncodedResult(codes) | |
| def decode(self, vq_code: torch.Tensor) -> torch.Tensor: | |
| if self.quantizer_type == "RVQ": | |
| vq_code = vq_code.permute(1, 0, 2) | |
| quantized = self.quantizer.decode(vq_code) | |
| quantized = quantized.transpose(1, 2) | |
| else: | |
| vq_code = vq_code.permute(0, 2, 1) | |
| quantized = self.quantizer.get_output_from_indices(vq_code) | |
| quantized_acoustic = self.fc_post2(quantized).transpose(1, 2) | |
| o = self.decoder_2(quantized_acoustic) | |
| return o.cpu().numpy() | |
| def load_higgs_audio_tokenizer(tokenizer_name_or_path, device="cuda"): | |
| is_local = os.path.exists(tokenizer_name_or_path) | |
| if not is_local: | |
| tokenizer_path = snapshot_download(tokenizer_name_or_path) | |
| else: | |
| tokenizer_path = tokenizer_name_or_path | |
| config_path = os.path.join(tokenizer_path, "config.json") | |
| model_path = os.path.join(tokenizer_path, "model.pth") | |
| config = json.load(open(config_path)) | |
| model = HiggsAudioTokenizer( | |
| **config, | |
| device=device, | |
| ) | |
| parameter_dict = torch.load(model_path, map_location=device) | |
| model.load_state_dict(parameter_dict, strict=False) | |
| model.to(device) | |
| model.eval() | |
| return model | |