Spaces:
Runtime error
Runtime error
zhiweili
commited on
Commit
·
c823534
1
Parent(s):
9afe403
change to app_haircolor_inpaint_15
Browse files- app.py +1 -1
- app_haircolor_inpaint_15.py +6 -45
app.py
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
|
| 3 |
-
from
|
| 4 |
|
| 5 |
with gr.Blocks(css="style.css") as demo:
|
| 6 |
with gr.Tabs():
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
|
| 3 |
+
from app_haircolor_inpaint_15 import create_demo as create_demo_haircolor
|
| 4 |
|
| 5 |
with gr.Blocks(css="style.css") as demo:
|
| 6 |
with gr.Tabs():
|
app_haircolor_inpaint_15.py
CHANGED
|
@@ -10,22 +10,12 @@ from segment_utils import(
|
|
| 10 |
restore_result,
|
| 11 |
)
|
| 12 |
from diffusers import (
|
| 13 |
-
|
| 14 |
-
ControlNetModel,
|
| 15 |
-
DDIMScheduler,
|
| 16 |
-
DPMSolverMultistepScheduler,
|
| 17 |
EulerAncestralDiscreteScheduler,
|
| 18 |
)
|
| 19 |
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
LineartDetector,
|
| 23 |
-
PidiNetDetector,
|
| 24 |
-
HEDdetector,
|
| 25 |
-
)
|
| 26 |
-
|
| 27 |
-
BASE_MODEL = "stable-diffusion-v1-5/stable-diffusion-v1-5"
|
| 28 |
-
# BASE_MODEL = "stable-diffusion-v1-5/stable-diffusion-inpainting"
|
| 29 |
# BASE_MODEL = "SG161222/Realistic_Vision_V2.0"
|
| 30 |
|
| 31 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
|
@@ -35,34 +25,12 @@ DEFAULT_NEGATIVE_PROMPT = "worst quality, normal quality, low quality, low res,
|
|
| 35 |
|
| 36 |
DEFAULT_CATEGORY = "hair"
|
| 37 |
|
| 38 |
-
|
| 39 |
-
lineart_detector = LineartDetector.from_pretrained("lllyasviel/Annotators")
|
| 40 |
-
lineart_detector = lineart_detector.to(DEVICE)
|
| 41 |
-
|
| 42 |
-
pidiNet_detector = PidiNetDetector.from_pretrained('lllyasviel/Annotators')
|
| 43 |
-
pidiNet_detector = pidiNet_detector.to(DEVICE)
|
| 44 |
-
|
| 45 |
-
hed_detector = HEDdetector.from_pretrained('lllyasviel/Annotators')
|
| 46 |
-
hed_detector = hed_detector.to(DEVICE)
|
| 47 |
-
|
| 48 |
-
controlnet = [
|
| 49 |
-
ControlNetModel.from_pretrained(
|
| 50 |
-
"lllyasviel/control_v11e_sd15_ip2p",
|
| 51 |
-
torch_dtype=torch.float16,
|
| 52 |
-
),
|
| 53 |
-
ControlNetModel.from_pretrained(
|
| 54 |
-
"lllyasviel/control_v11p_sd15_lineart",
|
| 55 |
-
torch_dtype=torch.float16,
|
| 56 |
-
),
|
| 57 |
-
]
|
| 58 |
-
|
| 59 |
-
basepipeline = StableDiffusionControlNetInpaintPipeline.from_pretrained(
|
| 60 |
BASE_MODEL,
|
| 61 |
torch_dtype=torch.float16,
|
| 62 |
-
use_safetensors=True,
|
| 63 |
-
controlnet=controlnet,
|
| 64 |
)
|
| 65 |
-
|
| 66 |
basepipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(basepipeline.scheduler.config)
|
| 67 |
|
| 68 |
basepipeline = basepipeline.to(DEVICE)
|
|
@@ -84,11 +52,6 @@ def image_to_image(
|
|
| 84 |
run_task_time = 0
|
| 85 |
time_cost_str = ''
|
| 86 |
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
|
| 87 |
-
# canny_image = canny_detector(input_image, int(generate_size*1), generate_size)
|
| 88 |
-
lineart_image = lineart_detector(input_image, 384, generate_size)
|
| 89 |
-
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
|
| 90 |
-
# pidiNet_image = pidiNet_detector(input_image, 512, generate_size)
|
| 91 |
-
control_image = [lineart_image, input_image]
|
| 92 |
|
| 93 |
generator = torch.Generator(device=DEVICE).manual_seed(seed)
|
| 94 |
generated_image = basepipeline(
|
|
@@ -97,12 +60,10 @@ def image_to_image(
|
|
| 97 |
negative_prompt=DEFAULT_NEGATIVE_PROMPT,
|
| 98 |
image=input_image,
|
| 99 |
mask_image=mask_image,
|
| 100 |
-
control_image=control_image,
|
| 101 |
height=generate_size,
|
| 102 |
width=generate_size,
|
| 103 |
guidance_scale=guidance_scale,
|
| 104 |
num_inference_steps=num_steps,
|
| 105 |
-
controlnet_conditioning_scale=[cond_scale1, cond_scale2],
|
| 106 |
).images[0]
|
| 107 |
|
| 108 |
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
|
|
|
|
| 10 |
restore_result,
|
| 11 |
)
|
| 12 |
from diffusers import (
|
| 13 |
+
StableDiffusionInpaintPipeline,
|
|
|
|
|
|
|
|
|
|
| 14 |
EulerAncestralDiscreteScheduler,
|
| 15 |
)
|
| 16 |
|
| 17 |
+
# BASE_MODEL = "stable-diffusion-v1-5/stable-diffusion-v1-5"
|
| 18 |
+
BASE_MODEL = "stable-diffusion-v1-5/stable-diffusion-inpainting"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
# BASE_MODEL = "SG161222/Realistic_Vision_V2.0"
|
| 20 |
|
| 21 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
| 25 |
|
| 26 |
DEFAULT_CATEGORY = "hair"
|
| 27 |
|
| 28 |
+
basepipeline = StableDiffusionInpaintPipeline.from_pretrained(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
BASE_MODEL,
|
| 30 |
torch_dtype=torch.float16,
|
| 31 |
+
# use_safetensors=True,
|
|
|
|
| 32 |
)
|
| 33 |
+
|
| 34 |
basepipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(basepipeline.scheduler.config)
|
| 35 |
|
| 36 |
basepipeline = basepipeline.to(DEVICE)
|
|
|
|
| 52 |
run_task_time = 0
|
| 53 |
time_cost_str = ''
|
| 54 |
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
|
| 56 |
generator = torch.Generator(device=DEVICE).manual_seed(seed)
|
| 57 |
generated_image = basepipeline(
|
|
|
|
| 60 |
negative_prompt=DEFAULT_NEGATIVE_PROMPT,
|
| 61 |
image=input_image,
|
| 62 |
mask_image=mask_image,
|
|
|
|
| 63 |
height=generate_size,
|
| 64 |
width=generate_size,
|
| 65 |
guidance_scale=guidance_scale,
|
| 66 |
num_inference_steps=num_steps,
|
|
|
|
| 67 |
).images[0]
|
| 68 |
|
| 69 |
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
|