Spaces:
Runtime error
Runtime error
zhiweili
commited on
Commit
·
b611dc3
1
Parent(s):
ff70f49
add _default_height_width
Browse files
pipelines/pipeline_sdxl_adapter_inpaint.py
CHANGED
|
@@ -1069,6 +1069,35 @@ class StableDiffusionXLInpaintPipeline(
|
|
| 1069 |
self.vae.decoder.conv_in.to(dtype)
|
| 1070 |
self.vae.decoder.mid_block.to(dtype)
|
| 1071 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1072 |
# Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
|
| 1073 |
def get_guidance_scale_embedding(
|
| 1074 |
self, w: torch.Tensor, embedding_dim: int = 512, dtype: torch.dtype = torch.float32
|
|
|
|
| 1069 |
self.vae.decoder.conv_in.to(dtype)
|
| 1070 |
self.vae.decoder.mid_block.to(dtype)
|
| 1071 |
|
| 1072 |
+
# Copied from diffusers.pipelines.t2i_adapter.pipeline_stable_diffusion_adapter.StableDiffusionAdapterPipeline._default_height_width
|
| 1073 |
+
def _default_height_width(self, height, width, image):
|
| 1074 |
+
# NOTE: It is possible that a list of images have different
|
| 1075 |
+
# dimensions for each image, so just checking the first image
|
| 1076 |
+
# is not _exactly_ correct, but it is simple.
|
| 1077 |
+
while isinstance(image, list):
|
| 1078 |
+
image = image[0]
|
| 1079 |
+
|
| 1080 |
+
if height is None:
|
| 1081 |
+
if isinstance(image, PIL.Image.Image):
|
| 1082 |
+
height = image.height
|
| 1083 |
+
elif isinstance(image, torch.Tensor):
|
| 1084 |
+
height = image.shape[-2]
|
| 1085 |
+
|
| 1086 |
+
# round down to nearest multiple of `self.adapter.downscale_factor`
|
| 1087 |
+
height = (height // self.adapter.downscale_factor) * self.adapter.downscale_factor
|
| 1088 |
+
|
| 1089 |
+
if width is None:
|
| 1090 |
+
if isinstance(image, PIL.Image.Image):
|
| 1091 |
+
width = image.width
|
| 1092 |
+
elif isinstance(image, torch.Tensor):
|
| 1093 |
+
width = image.shape[-1]
|
| 1094 |
+
|
| 1095 |
+
# round down to nearest multiple of `self.adapter.downscale_factor`
|
| 1096 |
+
width = (width // self.adapter.downscale_factor) * self.adapter.downscale_factor
|
| 1097 |
+
|
| 1098 |
+
return height, width
|
| 1099 |
+
|
| 1100 |
+
|
| 1101 |
# Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
|
| 1102 |
def get_guidance_scale_embedding(
|
| 1103 |
self, w: torch.Tensor, embedding_dim: int = 512, dtype: torch.dtype = torch.float32
|