Spaces:
Runtime error
Runtime error
zhiweili
commited on
Commit
·
37a1718
1
Parent(s):
c4a2b6e
add canny
Browse files- app_haircolor_inpaint_15.py +10 -5
app_haircolor_inpaint_15.py
CHANGED
|
@@ -53,6 +53,10 @@ controlnet = [
|
|
| 53 |
"lllyasviel/control_v11p_sd15_softedge",
|
| 54 |
torch_dtype=torch.float16,
|
| 55 |
),
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
]
|
| 57 |
|
| 58 |
basepipeline = StableDiffusionControlNetInpaintPipeline.from_pretrained(
|
|
@@ -79,15 +83,16 @@ def image_to_image(
|
|
| 79 |
generate_size: int,
|
| 80 |
cond_scale1: float = 1.2,
|
| 81 |
cond_scale2: float = 1.2,
|
|
|
|
| 82 |
):
|
| 83 |
run_task_time = 0
|
| 84 |
time_cost_str = ''
|
| 85 |
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
|
| 86 |
-
|
| 87 |
-
lineart_image = lineart_detector(input_image, int(generate_size*
|
| 88 |
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
|
| 89 |
-
pidiNet_image = pidiNet_detector(input_image, int(generate_size*
|
| 90 |
-
control_image = [lineart_image, pidiNet_image]
|
| 91 |
|
| 92 |
generator = torch.Generator(device=DEVICE).manual_seed(seed)
|
| 93 |
generated_image = basepipeline(
|
|
@@ -101,7 +106,7 @@ def image_to_image(
|
|
| 101 |
width=generate_size,
|
| 102 |
guidance_scale=guidance_scale,
|
| 103 |
num_inference_steps=num_steps,
|
| 104 |
-
controlnet_conditioning_scale=[cond_scale1, cond_scale2]
|
| 105 |
).images[0]
|
| 106 |
|
| 107 |
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
|
|
|
|
| 53 |
"lllyasviel/control_v11p_sd15_softedge",
|
| 54 |
torch_dtype=torch.float16,
|
| 55 |
),
|
| 56 |
+
ControlNetModel.from_pretrained(
|
| 57 |
+
"lllyasviel/control_v11p_sd15_canny",
|
| 58 |
+
torch_dtype=torch.float16,
|
| 59 |
+
),
|
| 60 |
]
|
| 61 |
|
| 62 |
basepipeline = StableDiffusionControlNetInpaintPipeline.from_pretrained(
|
|
|
|
| 83 |
generate_size: int,
|
| 84 |
cond_scale1: float = 1.2,
|
| 85 |
cond_scale2: float = 1.2,
|
| 86 |
+
cond_scale3: float = 1.2,
|
| 87 |
):
|
| 88 |
run_task_time = 0
|
| 89 |
time_cost_str = ''
|
| 90 |
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
|
| 91 |
+
canny_image = canny_detector(input_image, int(generate_size*1), generate_size)
|
| 92 |
+
lineart_image = lineart_detector(input_image, int(generate_size*1), generate_size)
|
| 93 |
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
|
| 94 |
+
pidiNet_image = pidiNet_detector(input_image, int(generate_size*1), generate_size)
|
| 95 |
+
control_image = [lineart_image, pidiNet_image, canny_image]
|
| 96 |
|
| 97 |
generator = torch.Generator(device=DEVICE).manual_seed(seed)
|
| 98 |
generated_image = basepipeline(
|
|
|
|
| 106 |
width=generate_size,
|
| 107 |
guidance_scale=guidance_scale,
|
| 108 |
num_inference_steps=num_steps,
|
| 109 |
+
controlnet_conditioning_scale=[cond_scale1, cond_scale2, cond_scale3],
|
| 110 |
).images[0]
|
| 111 |
|
| 112 |
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
|