Spaces:
Runtime error
Runtime error
zhiweili
commited on
Commit
·
02c0c4b
1
Parent(s):
2f53645
change app
Browse files- app.py +1 -1
- app_text2img.py +23 -4
app.py
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
|
| 3 |
-
from
|
| 4 |
|
| 5 |
with gr.Blocks(css="style.css") as demo:
|
| 6 |
with gr.Tabs():
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
|
| 3 |
+
from app_text2img import create_demo as create_demo_haircolor
|
| 4 |
|
| 5 |
with gr.Blocks(css="style.css") as demo:
|
| 6 |
with gr.Tabs():
|
app_text2img.py
CHANGED
|
@@ -18,6 +18,8 @@ from diffusers import (
|
|
| 18 |
from controlnet_aux import (
|
| 19 |
LineartDetector,
|
| 20 |
CannyDetector,
|
|
|
|
|
|
|
| 21 |
)
|
| 22 |
|
| 23 |
BASE_MODEL = "stabilityai/stable-diffusion-xl-base-1.0"
|
|
@@ -31,8 +33,16 @@ DEFAULT_CATEGORY = "hair"
|
|
| 31 |
lineart_detector = LineartDetector.from_pretrained("lllyasviel/Annotators")
|
| 32 |
lineart_detector = lineart_detector.to(DEVICE)
|
| 33 |
|
|
|
|
|
|
|
|
|
|
| 34 |
canndy_detector = CannyDetector()
|
| 35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
adapters = MultiAdapter(
|
| 37 |
[
|
| 38 |
T2IAdapter.from_pretrained(
|
|
@@ -45,6 +55,11 @@ adapters = MultiAdapter(
|
|
| 45 |
torch_dtype=torch.float16,
|
| 46 |
varient="fp16",
|
| 47 |
),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
]
|
| 49 |
)
|
| 50 |
adapters = adapters.to(torch.float16)
|
|
@@ -71,6 +86,7 @@ def image_to_image(
|
|
| 71 |
generate_size: int,
|
| 72 |
lineart_scale: float = 1.0,
|
| 73 |
canny_scale: float = 0.5,
|
|
|
|
| 74 |
):
|
| 75 |
run_task_time = 0
|
| 76 |
time_cost_str = ''
|
|
@@ -79,9 +95,11 @@ def image_to_image(
|
|
| 79 |
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
|
| 80 |
canny_image = canndy_detector(input_image, 384, generate_size)
|
| 81 |
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
|
|
|
|
|
|
|
| 82 |
|
| 83 |
-
cond_image = [lineart_image, canny_image]
|
| 84 |
-
cond_scale = [lineart_scale, canny_scale]
|
| 85 |
|
| 86 |
generator = torch.Generator(device=DEVICE).manual_seed(seed)
|
| 87 |
generated_image = basepipeline(
|
|
@@ -127,8 +145,9 @@ def create_demo() -> gr.Blocks:
|
|
| 127 |
mask_expansion = gr.Number(label="Mask Expansion", value=50, visible=True)
|
| 128 |
with gr.Column():
|
| 129 |
mask_dilation = gr.Slider(minimum=0, maximum=10, value=2, step=1, label="Mask Dilation")
|
| 130 |
-
lineart_scale = gr.Slider(minimum=0, maximum=2, value=
|
| 131 |
canny_scale = gr.Slider(minimum=0, maximum=2, value=0.7, step=0.1, label="Canny Scale")
|
|
|
|
| 132 |
g_btn = gr.Button("Edit Image")
|
| 133 |
|
| 134 |
with gr.Row():
|
|
@@ -147,7 +166,7 @@ def create_demo() -> gr.Blocks:
|
|
| 147 |
outputs=[origin_area_image, croper],
|
| 148 |
).success(
|
| 149 |
fn=image_to_image,
|
| 150 |
-
inputs=[origin_area_image, edit_prompt,seed, num_steps, guidance_scale, generate_size, lineart_scale, canny_scale],
|
| 151 |
outputs=[generated_image, generated_cost],
|
| 152 |
).success(
|
| 153 |
fn=restore_result,
|
|
|
|
| 18 |
from controlnet_aux import (
|
| 19 |
LineartDetector,
|
| 20 |
CannyDetector,
|
| 21 |
+
PidiNetDetector,
|
| 22 |
+
MidasDetector,
|
| 23 |
)
|
| 24 |
|
| 25 |
BASE_MODEL = "stabilityai/stable-diffusion-xl-base-1.0"
|
|
|
|
| 33 |
lineart_detector = LineartDetector.from_pretrained("lllyasviel/Annotators")
|
| 34 |
lineart_detector = lineart_detector.to(DEVICE)
|
| 35 |
|
| 36 |
+
pidinet_detector = PidiNetDetector.from_pretrained("lllyasviel/Annotators")
|
| 37 |
+
pidinet_detector = pidinet_detector.to(DEVICE)
|
| 38 |
+
|
| 39 |
canndy_detector = CannyDetector()
|
| 40 |
|
| 41 |
+
midas_detector = MidasDetector.from_pretrained(
|
| 42 |
+
"valhalla/t2iadapter-aux-models", filename="dpt_large_384.pt", model_type="dpt_large"
|
| 43 |
+
)
|
| 44 |
+
midas_detector = midas_detector.to(DEVICE)
|
| 45 |
+
|
| 46 |
adapters = MultiAdapter(
|
| 47 |
[
|
| 48 |
T2IAdapter.from_pretrained(
|
|
|
|
| 55 |
torch_dtype=torch.float16,
|
| 56 |
varient="fp16",
|
| 57 |
),
|
| 58 |
+
T2IAdapter.from_pretrained(
|
| 59 |
+
"TencentARC/t2i-adapter-sketch-sdxl-1.0",
|
| 60 |
+
torch_dtype=torch.float16,
|
| 61 |
+
varient="fp16",
|
| 62 |
+
),
|
| 63 |
]
|
| 64 |
)
|
| 65 |
adapters = adapters.to(torch.float16)
|
|
|
|
| 86 |
generate_size: int,
|
| 87 |
lineart_scale: float = 1.0,
|
| 88 |
canny_scale: float = 0.5,
|
| 89 |
+
sketch_scale: float = 1.0,
|
| 90 |
):
|
| 91 |
run_task_time = 0
|
| 92 |
time_cost_str = ''
|
|
|
|
| 95 |
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
|
| 96 |
canny_image = canndy_detector(input_image, 384, generate_size)
|
| 97 |
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
|
| 98 |
+
sketch_image = pidinet_detector(input_image, 512, generate_size)
|
| 99 |
+
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
|
| 100 |
|
| 101 |
+
cond_image = [lineart_image, canny_image, sketch_image]
|
| 102 |
+
cond_scale = [lineart_scale, canny_scale, sketch_scale]
|
| 103 |
|
| 104 |
generator = torch.Generator(device=DEVICE).manual_seed(seed)
|
| 105 |
generated_image = basepipeline(
|
|
|
|
| 145 |
mask_expansion = gr.Number(label="Mask Expansion", value=50, visible=True)
|
| 146 |
with gr.Column():
|
| 147 |
mask_dilation = gr.Slider(minimum=0, maximum=10, value=2, step=1, label="Mask Dilation")
|
| 148 |
+
lineart_scale = gr.Slider(minimum=0, maximum=2, value=1, step=0.1, label="Lineart Scale")
|
| 149 |
canny_scale = gr.Slider(minimum=0, maximum=2, value=0.7, step=0.1, label="Canny Scale")
|
| 150 |
+
sketch_scale = gr.Slider(minimum=0, maximum=2, value=1, step=0.1, label="Sketch Scale")
|
| 151 |
g_btn = gr.Button("Edit Image")
|
| 152 |
|
| 153 |
with gr.Row():
|
|
|
|
| 166 |
outputs=[origin_area_image, croper],
|
| 167 |
).success(
|
| 168 |
fn=image_to_image,
|
| 169 |
+
inputs=[origin_area_image, edit_prompt,seed, num_steps, guidance_scale, generate_size, lineart_scale, canny_scale, sketch_scale],
|
| 170 |
outputs=[generated_image, generated_cost],
|
| 171 |
).success(
|
| 172 |
fn=restore_result,
|