Spaces:
Runtime error
Runtime error
| # Copyright 2024 The InstructPix2Pix Authors and The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import inspect | |
| from typing import Any, Callable, Dict, List, Optional, Union | |
| import numpy as np | |
| import PIL.Image | |
| import torch | |
| from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection | |
| from diffusers.callbacks import ( | |
| MultiPipelineCallbacks, | |
| PipelineCallback, | |
| ) | |
| from diffusers.image_processor import ( | |
| PipelineImageInput, | |
| VaeImageProcessor, | |
| ) | |
| from diffusers.loaders import ( | |
| IPAdapterMixin, | |
| StableDiffusionLoraLoaderMixin, | |
| TextualInversionLoaderMixin, | |
| ) | |
| from diffusers.models import ( | |
| AutoencoderKL, | |
| ImageProjection, | |
| MultiAdapter, | |
| T2IAdapter, | |
| UNet2DConditionModel, | |
| ) | |
| from diffusers.schedulers import ( | |
| KarrasDiffusionSchedulers, | |
| ) | |
| from diffusers.utils import ( | |
| PIL_INTERPOLATION, | |
| deprecate, | |
| logging, | |
| ) | |
| from diffusers.utils.torch_utils import ( | |
| randn_tensor, | |
| ) | |
| from diffusers.pipelines.pipeline_utils import ( | |
| DiffusionPipeline, | |
| StableDiffusionMixin, | |
| ) | |
| from diffusers.pipelines.stable_diffusion.pipeline_output import ( | |
| StableDiffusionPipelineOutput, | |
| ) | |
| from diffusers.pipelines.stable_diffusion.safety_checker import ( | |
| StableDiffusionSafetyChecker, | |
| ) | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| def _preprocess_adapter_image(image, height, width): | |
| if isinstance(image, torch.Tensor): | |
| return image | |
| elif isinstance(image, PIL.Image.Image): | |
| image = [image] | |
| if isinstance(image[0], PIL.Image.Image): | |
| image = [np.array(i.resize((width, height), resample=PIL_INTERPOLATION["lanczos"])) for i in image] | |
| image = [ | |
| i[None, ..., None] if i.ndim == 2 else i[None, ...] for i in image | |
| ] # expand [h, w] or [h, w, c] to [b, h, w, c] | |
| image = np.concatenate(image, axis=0) | |
| image = np.array(image).astype(np.float32) / 255.0 | |
| image = image.transpose(0, 3, 1, 2) | |
| image = torch.from_numpy(image) | |
| elif isinstance(image[0], torch.Tensor): | |
| if image[0].ndim == 3: | |
| image = torch.stack(image, dim=0) | |
| elif image[0].ndim == 4: | |
| image = torch.cat(image, dim=0) | |
| else: | |
| raise ValueError( | |
| f"Invalid image tensor! Expecting image tensor with 3 or 4 dimension, but recive: {image[0].ndim}" | |
| ) | |
| return image | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.preprocess | |
| def preprocess(image): | |
| deprecation_message = "The preprocess method is deprecated and will be removed in diffusers 1.0.0. Please use VaeImageProcessor.preprocess(...) instead" | |
| deprecate("preprocess", "1.0.0", deprecation_message, standard_warn=False) | |
| if isinstance(image, torch.Tensor): | |
| return image | |
| elif isinstance(image, PIL.Image.Image): | |
| image = [image] | |
| if isinstance(image[0], PIL.Image.Image): | |
| w, h = image[0].size | |
| w, h = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8 | |
| image = [np.array(i.resize((w, h), resample=PIL_INTERPOLATION["lanczos"]))[None, :] for i in image] | |
| image = np.concatenate(image, axis=0) | |
| image = np.array(image).astype(np.float32) / 255.0 | |
| image = image.transpose(0, 3, 1, 2) | |
| image = 2.0 * image - 1.0 | |
| image = torch.from_numpy(image) | |
| elif isinstance(image[0], torch.Tensor): | |
| image = torch.cat(image, dim=0) | |
| return image | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents | |
| def retrieve_latents( | |
| encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample" | |
| ): | |
| if hasattr(encoder_output, "latent_dist") and sample_mode == "sample": | |
| return encoder_output.latent_dist.sample(generator) | |
| elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax": | |
| return encoder_output.latent_dist.mode() | |
| elif hasattr(encoder_output, "latents"): | |
| return encoder_output.latents | |
| else: | |
| raise AttributeError("Could not access latents of provided encoder_output") | |
| class StableDiffusionInstructPix2PixPipeline( | |
| DiffusionPipeline, | |
| StableDiffusionMixin, | |
| TextualInversionLoaderMixin, | |
| StableDiffusionLoraLoaderMixin, | |
| IPAdapterMixin, | |
| ): | |
| r""" | |
| Pipeline for pixel-level image editing by following text instructions (based on Stable Diffusion). | |
| This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods | |
| implemented for all pipelines (downloading, saving, running on a particular device, etc.). | |
| The pipeline also inherits the following loading methods: | |
| - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings | |
| - [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for loading LoRA weights | |
| - [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for saving LoRA weights | |
| - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters | |
| Args: | |
| vae ([`AutoencoderKL`]): | |
| Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations. | |
| text_encoder ([`~transformers.CLIPTextModel`]): | |
| Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). | |
| tokenizer ([`~transformers.CLIPTokenizer`]): | |
| A `CLIPTokenizer` to tokenize text. | |
| unet ([`UNet2DConditionModel`]): | |
| A `UNet2DConditionModel` to denoise the encoded image latents. | |
| scheduler ([`SchedulerMixin`]): | |
| A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of | |
| [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. | |
| safety_checker ([`StableDiffusionSafetyChecker`]): | |
| Classification module that estimates whether generated images could be considered offensive or harmful. | |
| Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details | |
| about a model's potential harms. | |
| feature_extractor ([`~transformers.CLIPImageProcessor`]): | |
| A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`. | |
| """ | |
| model_cpu_offload_seq = "text_encoder->unet->vae" | |
| _optional_components = ["safety_checker", "feature_extractor", "image_encoder"] | |
| _exclude_from_cpu_offload = ["safety_checker"] | |
| _callback_tensor_inputs = ["latents", "prompt_embeds", "image_latents"] | |
| def __init__( | |
| self, | |
| vae: AutoencoderKL, | |
| text_encoder: CLIPTextModel, | |
| tokenizer: CLIPTokenizer, | |
| unet: UNet2DConditionModel, | |
| adapter: Union[T2IAdapter, MultiAdapter, List[T2IAdapter]], | |
| scheduler: KarrasDiffusionSchedulers, | |
| safety_checker: StableDiffusionSafetyChecker, | |
| feature_extractor: CLIPImageProcessor, | |
| image_encoder: Optional[CLIPVisionModelWithProjection] = None, | |
| requires_safety_checker: bool = True, | |
| ): | |
| super().__init__() | |
| if safety_checker is None and requires_safety_checker: | |
| logger.warning( | |
| f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" | |
| " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" | |
| " results in services or applications open to the public. Both the diffusers team and Hugging Face" | |
| " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" | |
| " it only for use-cases that involve analyzing network behavior or auditing its results. For more" | |
| " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." | |
| ) | |
| if safety_checker is not None and feature_extractor is None: | |
| raise ValueError( | |
| "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety" | |
| " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead." | |
| ) | |
| self.register_modules( | |
| vae=vae, | |
| text_encoder=text_encoder, | |
| tokenizer=tokenizer, | |
| unet=unet, | |
| adapter=adapter, | |
| scheduler=scheduler, | |
| safety_checker=safety_checker, | |
| feature_extractor=feature_extractor, | |
| image_encoder=image_encoder, | |
| ) | |
| self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | |
| self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) | |
| self.register_to_config(requires_safety_checker=requires_safety_checker) | |
| def __call__( | |
| self, | |
| prompt: Union[str, List[str]] = None, | |
| image: PipelineImageInput = None, | |
| height: Optional[int] = None, | |
| width: Optional[int] = None, | |
| adapter_image: PipelineImageInput = None, | |
| num_inference_steps: int = 100, | |
| guidance_scale: float = 7.5, | |
| image_guidance_scale: float = 1.5, | |
| negative_prompt: Optional[Union[str, List[str]]] = None, | |
| num_images_per_prompt: Optional[int] = 1, | |
| eta: float = 0.0, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.Tensor] = None, | |
| prompt_embeds: Optional[torch.Tensor] = None, | |
| negative_prompt_embeds: Optional[torch.Tensor] = None, | |
| ip_adapter_image: Optional[PipelineImageInput] = None, | |
| ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| adapter_conditioning_scale: Union[float, List[float]] = 1.0, | |
| callback_on_step_end: Optional[ | |
| Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks] | |
| ] = None, | |
| callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
| cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
| **kwargs, | |
| ): | |
| r""" | |
| The call function to the pipeline for generation. | |
| Args: | |
| prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. | |
| image (`torch.Tensor` `np.ndarray`, `PIL.Image.Image`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`): | |
| `Image` or tensor representing an image batch to be repainted according to `prompt`. Can also accept | |
| image latents as `image`, but if passing latents directly it is not encoded again. | |
| num_inference_steps (`int`, *optional*, defaults to 100): | |
| The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
| expense of slower inference. | |
| guidance_scale (`float`, *optional*, defaults to 7.5): | |
| A higher guidance scale value encourages the model to generate images closely linked to the text | |
| `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. | |
| image_guidance_scale (`float`, *optional*, defaults to 1.5): | |
| Push the generated image towards the initial `image`. Image guidance scale is enabled by setting | |
| `image_guidance_scale > 1`. Higher image guidance scale encourages generated images that are closely | |
| linked to the source `image`, usually at the expense of lower image quality. This pipeline requires a | |
| value of at least `1`. | |
| negative_prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to guide what to not include in image generation. If not defined, you need to | |
| pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). | |
| num_images_per_prompt (`int`, *optional*, defaults to 1): | |
| The number of images to generate per prompt. | |
| eta (`float`, *optional*, defaults to 0.0): | |
| Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies | |
| to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. | |
| generator (`torch.Generator`, *optional*): | |
| A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make | |
| generation deterministic. | |
| latents (`torch.Tensor`, *optional*): | |
| Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image | |
| generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
| tensor is generated by sampling using the supplied random `generator`. | |
| prompt_embeds (`torch.Tensor`, *optional*): | |
| Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not | |
| provided, text embeddings are generated from the `prompt` input argument. | |
| negative_prompt_embeds (`torch.Tensor`, *optional*): | |
| Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If | |
| not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. | |
| ip_adapter_image: (`PipelineImageInput`, *optional*): | |
| Optional image input to work with IP Adapters. | |
| output_type (`str`, *optional*, defaults to `"pil"`): | |
| The output format of the generated image. Choose between `PIL.Image` or `np.array`. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a | |
| plain tuple. | |
| callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*): | |
| A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of | |
| each denoising step during the inference. with the following arguments: `callback_on_step_end(self: | |
| DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a | |
| list of all tensors as specified by `callback_on_step_end_tensor_inputs`. | |
| callback_on_step_end_tensor_inputs (`List`, *optional*): | |
| The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list | |
| will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the | |
| `._callback_tensor_inputs` attribute of your pipeline class. | |
| cross_attention_kwargs (`dict`, *optional*): | |
| A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in | |
| [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
| Examples: | |
| ```py | |
| >>> import PIL | |
| >>> import requests | |
| >>> import torch | |
| >>> from io import BytesIO | |
| >>> from diffusers import StableDiffusionInstructPix2PixPipeline | |
| >>> def download_image(url): | |
| ... response = requests.get(url) | |
| ... return PIL.Image.open(BytesIO(response.content)).convert("RGB") | |
| >>> img_url = "https://huggingface.co/datasets/diffusers/diffusers-images-docs/resolve/main/mountain.png" | |
| >>> image = download_image(img_url).resize((512, 512)) | |
| >>> pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained( | |
| ... "timbrooks/instruct-pix2pix", torch_dtype=torch.float16 | |
| ... ) | |
| >>> pipe = pipe.to("cuda") | |
| >>> prompt = "make the mountains snowy" | |
| >>> image = pipe(prompt=prompt, image=image).images[0] | |
| ``` | |
| Returns: | |
| [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: | |
| If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, | |
| otherwise a `tuple` is returned where the first element is a list with the generated images and the | |
| second element is a list of `bool`s indicating whether the corresponding generated image contains | |
| "not-safe-for-work" (nsfw) content. | |
| """ | |
| height, width = self._default_height_width(height, width, adapter_image) | |
| device = self._execution_device | |
| if isinstance(self.adapter, MultiAdapter): | |
| adapter_input = [] | |
| for one_image in adapter_image: | |
| one_image = _preprocess_adapter_image(one_image, height, width) | |
| one_image = one_image.to(device=device, dtype=self.adapter.dtype) | |
| adapter_input.append(one_image) | |
| else: | |
| adapter_input = _preprocess_adapter_image(adapter_image, height, width) | |
| adapter_input = adapter_input.to(device=device, dtype=self.adapter.dtype) | |
| callback = kwargs.pop("callback", None) | |
| callback_steps = kwargs.pop("callback_steps", None) | |
| if callback is not None: | |
| deprecate( | |
| "callback", | |
| "1.0.0", | |
| "Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`", | |
| ) | |
| if callback_steps is not None: | |
| deprecate( | |
| "callback_steps", | |
| "1.0.0", | |
| "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`", | |
| ) | |
| if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): | |
| callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs | |
| # 0. Check inputs | |
| self.check_inputs( | |
| prompt, | |
| callback_steps, | |
| negative_prompt, | |
| prompt_embeds, | |
| negative_prompt_embeds, | |
| ip_adapter_image, | |
| ip_adapter_image_embeds, | |
| callback_on_step_end_tensor_inputs, | |
| ) | |
| self._guidance_scale = guidance_scale | |
| self._image_guidance_scale = image_guidance_scale | |
| device = self._execution_device | |
| if image is None: | |
| raise ValueError("`image` input cannot be undefined.") | |
| # 1. Define call parameters | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| device = self._execution_device | |
| # 2. Encode input prompt | |
| prompt_embeds = self._encode_prompt( | |
| prompt, | |
| device, | |
| num_images_per_prompt, | |
| self.do_classifier_free_guidance, | |
| negative_prompt, | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| ) | |
| if ip_adapter_image is not None or ip_adapter_image_embeds is not None: | |
| image_embeds = self.prepare_ip_adapter_image_embeds( | |
| ip_adapter_image, | |
| ip_adapter_image_embeds, | |
| device, | |
| batch_size * num_images_per_prompt, | |
| self.do_classifier_free_guidance, | |
| ) | |
| # 3. Preprocess image | |
| image = self.image_processor.preprocess(image) | |
| # 4. set timesteps | |
| self.scheduler.set_timesteps(num_inference_steps, device=device) | |
| timesteps = self.scheduler.timesteps | |
| # 5. Prepare Image latents | |
| image_latents = self.prepare_image_latents( | |
| image, | |
| batch_size, | |
| num_images_per_prompt, | |
| prompt_embeds.dtype, | |
| device, | |
| self.do_classifier_free_guidance, | |
| ) | |
| height, width = image_latents.shape[-2:] | |
| height = height * self.vae_scale_factor | |
| width = width * self.vae_scale_factor | |
| # 6. Prepare latent variables | |
| num_channels_latents = self.vae.config.latent_channels | |
| latents = self.prepare_latents( | |
| batch_size * num_images_per_prompt, | |
| num_channels_latents, | |
| height, | |
| width, | |
| prompt_embeds.dtype, | |
| device, | |
| generator, | |
| latents, | |
| ) | |
| # 7. Check that shapes of latents and image match the UNet channels | |
| num_channels_image = image_latents.shape[1] | |
| if num_channels_latents + num_channels_image != self.unet.config.in_channels: | |
| raise ValueError( | |
| f"Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects" | |
| f" {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +" | |
| f" `num_channels_image`: {num_channels_image} " | |
| f" = {num_channels_latents+num_channels_image}. Please verify the config of" | |
| " `pipeline.unet` or your `image` input." | |
| ) | |
| # 8. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
| extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
| # 8.1 Add image embeds for IP-Adapter | |
| added_cond_kwargs = {"image_embeds": image_embeds} if ip_adapter_image is not None else None | |
| # 9. Denoising loop | |
| if isinstance(self.adapter, MultiAdapter): | |
| adapter_state = self.adapter(adapter_input, adapter_conditioning_scale) | |
| for k, v in enumerate(adapter_state): | |
| adapter_state[k] = v | |
| else: | |
| adapter_state = self.adapter(adapter_input) | |
| for k, v in enumerate(adapter_state): | |
| adapter_state[k] = v * adapter_conditioning_scale | |
| if num_images_per_prompt > 1: | |
| for k, v in enumerate(adapter_state): | |
| adapter_state[k] = v.repeat(num_images_per_prompt, 1, 1, 1) | |
| if self.do_classifier_free_guidance: | |
| for k, v in enumerate(adapter_state): | |
| adapter_state[k] = torch.cat([v] * 2, dim=0) | |
| num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
| self._num_timesteps = len(timesteps) | |
| with self.progress_bar(total=num_inference_steps) as progress_bar: | |
| for i, t in enumerate(timesteps): | |
| # Expand the latents if we are doing classifier free guidance. | |
| # The latents are expanded 3 times because for pix2pix the guidance\ | |
| # is applied for both the text and the input image. | |
| latent_model_input = torch.cat([latents] * 3) if self.do_classifier_free_guidance else latents | |
| # concat latents, image_latents in the channel dimension | |
| scaled_latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
| scaled_latent_model_input = torch.cat([scaled_latent_model_input, image_latents], dim=1) | |
| # predict the noise residual | |
| noise_pred = self.unet( | |
| scaled_latent_model_input, | |
| t, | |
| encoder_hidden_states=prompt_embeds, | |
| added_cond_kwargs=added_cond_kwargs, | |
| down_intrablock_additional_residuals=[state.clone() for state in adapter_state], | |
| cross_attention_kwargs=cross_attention_kwargs, | |
| return_dict=False, | |
| )[0] | |
| # perform guidance | |
| if self.do_classifier_free_guidance: | |
| noise_pred_text, noise_pred_image, noise_pred_uncond = noise_pred.chunk(3) | |
| noise_pred = ( | |
| noise_pred_uncond | |
| + self.guidance_scale * (noise_pred_text - noise_pred_image) | |
| + self.image_guidance_scale * (noise_pred_image - noise_pred_uncond) | |
| ) | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] | |
| if callback_on_step_end is not None: | |
| callback_kwargs = {} | |
| for k in callback_on_step_end_tensor_inputs: | |
| callback_kwargs[k] = locals()[k] | |
| callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) | |
| latents = callback_outputs.pop("latents", latents) | |
| prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) | |
| negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) | |
| image_latents = callback_outputs.pop("image_latents", image_latents) | |
| # call the callback, if provided | |
| if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
| progress_bar.update() | |
| if callback is not None and i % callback_steps == 0: | |
| step_idx = i // getattr(self.scheduler, "order", 1) | |
| callback(step_idx, t, latents) | |
| if not output_type == "latent": | |
| image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] | |
| image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) | |
| else: | |
| image = latents | |
| has_nsfw_concept = None | |
| if has_nsfw_concept is None: | |
| do_denormalize = [True] * image.shape[0] | |
| else: | |
| do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] | |
| image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) | |
| # Offload all models | |
| self.maybe_free_model_hooks() | |
| if not return_dict: | |
| return (image, has_nsfw_concept) | |
| return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) | |
| def _encode_prompt( | |
| self, | |
| prompt, | |
| device, | |
| num_images_per_prompt, | |
| do_classifier_free_guidance, | |
| negative_prompt=None, | |
| prompt_embeds: Optional[torch.Tensor] = None, | |
| negative_prompt_embeds: Optional[torch.Tensor] = None, | |
| ): | |
| r""" | |
| Encodes the prompt into text encoder hidden states. | |
| Args: | |
| prompt (`str` or `List[str]`, *optional*): | |
| prompt to be encoded | |
| device: (`torch.device`): | |
| torch device | |
| num_images_per_prompt (`int`): | |
| number of images that should be generated per prompt | |
| do_classifier_free_guidance (`bool`): | |
| whether to use classifier free guidance or not | |
| negative_ prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
| `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
| less than `1`). | |
| prompt_embeds (`torch.Tensor`, *optional*): | |
| Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
| provided, text embeddings will be generated from `prompt` input argument. | |
| negative_prompt_embeds (`torch.Tensor`, *optional*): | |
| Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
| weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
| argument. | |
| """ | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| if prompt_embeds is None: | |
| # textual inversion: process multi-vector tokens if necessary | |
| if isinstance(self, TextualInversionLoaderMixin): | |
| prompt = self.maybe_convert_prompt(prompt, self.tokenizer) | |
| text_inputs = self.tokenizer( | |
| prompt, | |
| padding="max_length", | |
| max_length=self.tokenizer.model_max_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| text_input_ids = text_inputs.input_ids | |
| untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | |
| if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( | |
| text_input_ids, untruncated_ids | |
| ): | |
| removed_text = self.tokenizer.batch_decode( | |
| untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] | |
| ) | |
| logger.warning( | |
| "The following part of your input was truncated because CLIP can only handle sequences up to" | |
| f" {self.tokenizer.model_max_length} tokens: {removed_text}" | |
| ) | |
| if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | |
| attention_mask = text_inputs.attention_mask.to(device) | |
| else: | |
| attention_mask = None | |
| prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) | |
| prompt_embeds = prompt_embeds[0] | |
| if self.text_encoder is not None: | |
| prompt_embeds_dtype = self.text_encoder.dtype | |
| else: | |
| prompt_embeds_dtype = self.unet.dtype | |
| prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) | |
| bs_embed, seq_len, _ = prompt_embeds.shape | |
| # duplicate text embeddings for each generation per prompt, using mps friendly method | |
| prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
| prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) | |
| # get unconditional embeddings for classifier free guidance | |
| if do_classifier_free_guidance and negative_prompt_embeds is None: | |
| uncond_tokens: List[str] | |
| if negative_prompt is None: | |
| uncond_tokens = [""] * batch_size | |
| elif type(prompt) is not type(negative_prompt): | |
| raise TypeError( | |
| f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | |
| f" {type(prompt)}." | |
| ) | |
| elif isinstance(negative_prompt, str): | |
| uncond_tokens = [negative_prompt] | |
| elif batch_size != len(negative_prompt): | |
| raise ValueError( | |
| f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | |
| f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | |
| " the batch size of `prompt`." | |
| ) | |
| else: | |
| uncond_tokens = negative_prompt | |
| # textual inversion: process multi-vector tokens if necessary | |
| if isinstance(self, TextualInversionLoaderMixin): | |
| uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) | |
| max_length = prompt_embeds.shape[1] | |
| uncond_input = self.tokenizer( | |
| uncond_tokens, | |
| padding="max_length", | |
| max_length=max_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | |
| attention_mask = uncond_input.attention_mask.to(device) | |
| else: | |
| attention_mask = None | |
| negative_prompt_embeds = self.text_encoder( | |
| uncond_input.input_ids.to(device), | |
| attention_mask=attention_mask, | |
| ) | |
| negative_prompt_embeds = negative_prompt_embeds[0] | |
| if do_classifier_free_guidance: | |
| # duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
| seq_len = negative_prompt_embeds.shape[1] | |
| negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) | |
| negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
| negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) | |
| # For classifier free guidance, we need to do two forward passes. | |
| # Here we concatenate the unconditional and text embeddings into a single batch | |
| # to avoid doing two forward passes | |
| # pix2pix has two negative embeddings, and unlike in other pipelines latents are ordered [prompt_embeds, negative_prompt_embeds, negative_prompt_embeds] | |
| prompt_embeds = torch.cat([prompt_embeds, negative_prompt_embeds, negative_prompt_embeds]) | |
| return prompt_embeds | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image | |
| def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None): | |
| dtype = next(self.image_encoder.parameters()).dtype | |
| if not isinstance(image, torch.Tensor): | |
| image = self.feature_extractor(image, return_tensors="pt").pixel_values | |
| image = image.to(device=device, dtype=dtype) | |
| if output_hidden_states: | |
| image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2] | |
| image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) | |
| uncond_image_enc_hidden_states = self.image_encoder( | |
| torch.zeros_like(image), output_hidden_states=True | |
| ).hidden_states[-2] | |
| uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave( | |
| num_images_per_prompt, dim=0 | |
| ) | |
| return image_enc_hidden_states, uncond_image_enc_hidden_states | |
| else: | |
| image_embeds = self.image_encoder(image).image_embeds | |
| image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) | |
| uncond_image_embeds = torch.zeros_like(image_embeds) | |
| return image_embeds, uncond_image_embeds | |
| def prepare_ip_adapter_image_embeds( | |
| self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance | |
| ): | |
| if ip_adapter_image_embeds is None: | |
| if not isinstance(ip_adapter_image, list): | |
| ip_adapter_image = [ip_adapter_image] | |
| if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers): | |
| raise ValueError( | |
| f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters." | |
| ) | |
| image_embeds = [] | |
| for single_ip_adapter_image, image_proj_layer in zip( | |
| ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers | |
| ): | |
| output_hidden_state = not isinstance(image_proj_layer, ImageProjection) | |
| single_image_embeds, single_negative_image_embeds = self.encode_image( | |
| single_ip_adapter_image, device, 1, output_hidden_state | |
| ) | |
| single_image_embeds = torch.stack([single_image_embeds] * num_images_per_prompt, dim=0) | |
| single_negative_image_embeds = torch.stack( | |
| [single_negative_image_embeds] * num_images_per_prompt, dim=0 | |
| ) | |
| if do_classifier_free_guidance: | |
| single_image_embeds = torch.cat( | |
| [single_image_embeds, single_negative_image_embeds, single_negative_image_embeds] | |
| ) | |
| single_image_embeds = single_image_embeds.to(device) | |
| image_embeds.append(single_image_embeds) | |
| else: | |
| repeat_dims = [1] | |
| image_embeds = [] | |
| for single_image_embeds in ip_adapter_image_embeds: | |
| if do_classifier_free_guidance: | |
| ( | |
| single_image_embeds, | |
| single_negative_image_embeds, | |
| single_negative_image_embeds, | |
| ) = single_image_embeds.chunk(3) | |
| single_image_embeds = single_image_embeds.repeat( | |
| num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:])) | |
| ) | |
| single_negative_image_embeds = single_negative_image_embeds.repeat( | |
| num_images_per_prompt, *(repeat_dims * len(single_negative_image_embeds.shape[1:])) | |
| ) | |
| single_image_embeds = torch.cat( | |
| [single_image_embeds, single_negative_image_embeds, single_negative_image_embeds] | |
| ) | |
| else: | |
| single_image_embeds = single_image_embeds.repeat( | |
| num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:])) | |
| ) | |
| image_embeds.append(single_image_embeds) | |
| return image_embeds | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker | |
| def run_safety_checker(self, image, device, dtype): | |
| if self.safety_checker is None: | |
| has_nsfw_concept = None | |
| else: | |
| if torch.is_tensor(image): | |
| feature_extractor_input = self.image_processor.postprocess(image, output_type="pil") | |
| else: | |
| feature_extractor_input = self.image_processor.numpy_to_pil(image) | |
| safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device) | |
| image, has_nsfw_concept = self.safety_checker( | |
| images=image, clip_input=safety_checker_input.pixel_values.to(dtype) | |
| ) | |
| return image, has_nsfw_concept | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs | |
| def prepare_extra_step_kwargs(self, generator, eta): | |
| # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
| # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
| # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | |
| # and should be between [0, 1] | |
| accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
| extra_step_kwargs = {} | |
| if accepts_eta: | |
| extra_step_kwargs["eta"] = eta | |
| # check if the scheduler accepts generator | |
| accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
| if accepts_generator: | |
| extra_step_kwargs["generator"] = generator | |
| return extra_step_kwargs | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents | |
| def decode_latents(self, latents): | |
| deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead" | |
| deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False) | |
| latents = 1 / self.vae.config.scaling_factor * latents | |
| image = self.vae.decode(latents, return_dict=False)[0] | |
| image = (image / 2 + 0.5).clamp(0, 1) | |
| # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 | |
| image = image.cpu().permute(0, 2, 3, 1).float().numpy() | |
| return image | |
| def check_inputs( | |
| self, | |
| prompt, | |
| callback_steps, | |
| negative_prompt=None, | |
| prompt_embeds=None, | |
| negative_prompt_embeds=None, | |
| ip_adapter_image=None, | |
| ip_adapter_image_embeds=None, | |
| callback_on_step_end_tensor_inputs=None, | |
| ): | |
| if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): | |
| raise ValueError( | |
| f"`callback_steps` has to be a positive integer but is {callback_steps} of type" | |
| f" {type(callback_steps)}." | |
| ) | |
| if callback_on_step_end_tensor_inputs is not None and not all( | |
| k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs | |
| ): | |
| raise ValueError( | |
| f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" | |
| ) | |
| if prompt is not None and prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
| " only forward one of the two." | |
| ) | |
| elif prompt is None and prompt_embeds is None: | |
| raise ValueError( | |
| "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." | |
| ) | |
| elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): | |
| raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
| if negative_prompt is not None and negative_prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" | |
| f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
| ) | |
| if prompt_embeds is not None and negative_prompt_embeds is not None: | |
| if prompt_embeds.shape != negative_prompt_embeds.shape: | |
| raise ValueError( | |
| "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" | |
| f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" | |
| f" {negative_prompt_embeds.shape}." | |
| ) | |
| if ip_adapter_image is not None and ip_adapter_image_embeds is not None: | |
| raise ValueError( | |
| "Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined." | |
| ) | |
| if ip_adapter_image_embeds is not None: | |
| if not isinstance(ip_adapter_image_embeds, list): | |
| raise ValueError( | |
| f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}" | |
| ) | |
| elif ip_adapter_image_embeds[0].ndim not in [3, 4]: | |
| raise ValueError( | |
| f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D" | |
| ) | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents | |
| def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): | |
| shape = ( | |
| batch_size, | |
| num_channels_latents, | |
| int(height) // self.vae_scale_factor, | |
| int(width) // self.vae_scale_factor, | |
| ) | |
| if isinstance(generator, list) and len(generator) != batch_size: | |
| raise ValueError( | |
| f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
| f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
| ) | |
| if latents is None: | |
| latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
| else: | |
| latents = latents.to(device) | |
| # scale the initial noise by the standard deviation required by the scheduler | |
| latents = latents * self.scheduler.init_noise_sigma | |
| return latents | |
| def _default_height_width(self, height, width, image): | |
| # NOTE: It is possible that a list of images have different | |
| # dimensions for each image, so just checking the first image | |
| # is not _exactly_ correct, but it is simple. | |
| while isinstance(image, list): | |
| image = image[0] | |
| if height is None: | |
| if isinstance(image, PIL.Image.Image): | |
| height = image.height | |
| elif isinstance(image, torch.Tensor): | |
| height = image.shape[-2] | |
| # round down to nearest multiple of `self.adapter.downscale_factor` | |
| height = (height // self.adapter.downscale_factor) * self.adapter.downscale_factor | |
| if width is None: | |
| if isinstance(image, PIL.Image.Image): | |
| width = image.width | |
| elif isinstance(image, torch.Tensor): | |
| width = image.shape[-1] | |
| # round down to nearest multiple of `self.adapter.downscale_factor` | |
| width = (width // self.adapter.downscale_factor) * self.adapter.downscale_factor | |
| return height, width | |
| def prepare_image_latents( | |
| self, image, batch_size, num_images_per_prompt, dtype, device, do_classifier_free_guidance, generator=None | |
| ): | |
| if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)): | |
| raise ValueError( | |
| f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}" | |
| ) | |
| image = image.to(device=device, dtype=dtype) | |
| batch_size = batch_size * num_images_per_prompt | |
| if image.shape[1] == 4: | |
| image_latents = image | |
| else: | |
| image_latents = retrieve_latents(self.vae.encode(image), sample_mode="argmax") | |
| if batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] == 0: | |
| # expand image_latents for batch_size | |
| deprecation_message = ( | |
| f"You have passed {batch_size} text prompts (`prompt`), but only {image_latents.shape[0]} initial" | |
| " images (`image`). Initial images are now duplicating to match the number of text prompts. Note" | |
| " that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update" | |
| " your script to pass as many initial images as text prompts to suppress this warning." | |
| ) | |
| deprecate("len(prompt) != len(image)", "1.0.0", deprecation_message, standard_warn=False) | |
| additional_image_per_prompt = batch_size // image_latents.shape[0] | |
| image_latents = torch.cat([image_latents] * additional_image_per_prompt, dim=0) | |
| elif batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] != 0: | |
| raise ValueError( | |
| f"Cannot duplicate `image` of batch size {image_latents.shape[0]} to {batch_size} text prompts." | |
| ) | |
| else: | |
| image_latents = torch.cat([image_latents], dim=0) | |
| if do_classifier_free_guidance: | |
| uncond_image_latents = torch.zeros_like(image_latents) | |
| image_latents = torch.cat([image_latents, image_latents, uncond_image_latents], dim=0) | |
| return image_latents | |
| def guidance_scale(self): | |
| return self._guidance_scale | |
| def image_guidance_scale(self): | |
| return self._image_guidance_scale | |
| def num_timesteps(self): | |
| return self._num_timesteps | |
| # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
| # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
| # corresponds to doing no classifier free guidance. | |
| def do_classifier_free_guidance(self): | |
| return self.guidance_scale > 1.0 and self.image_guidance_scale >= 1.0 | |