Spaces:
Runtime error
Runtime error
| from typing import Any, Callable, Dict, List, Optional, Tuple, Union | |
| import numpy as np | |
| import torch | |
| from PIL import Image, ImageFilter | |
| from diffusers.image_processor import PipelineImageInput | |
| from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput | |
| from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl_img2img import ( | |
| StableDiffusionXLImg2ImgPipeline, | |
| rescale_noise_cfg, | |
| retrieve_latents, | |
| retrieve_timesteps, | |
| ) | |
| from diffusers.utils import ( | |
| deprecate, | |
| is_torch_xla_available, | |
| logging, | |
| ) | |
| from diffusers.utils.torch_utils import randn_tensor | |
| if is_torch_xla_available(): | |
| import torch_xla.core.xla_model as xm | |
| XLA_AVAILABLE = True | |
| else: | |
| XLA_AVAILABLE = False | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| class MaskedStableDiffusionXLImg2ImgPipeline(StableDiffusionXLImg2ImgPipeline): | |
| debug_save = 0 | |
| def __call__( | |
| self, | |
| prompt: Union[str, List[str]] = None, | |
| prompt_2: Optional[Union[str, List[str]]] = None, | |
| image: PipelineImageInput = None, | |
| original_image: PipelineImageInput = None, | |
| strength: float = 0.3, | |
| num_inference_steps: Optional[int] = 50, | |
| timesteps: List[int] = None, | |
| denoising_start: Optional[float] = None, | |
| denoising_end: Optional[float] = None, | |
| guidance_scale: Optional[float] = 5.0, | |
| negative_prompt: Optional[Union[str, List[str]]] = None, | |
| negative_prompt_2: Optional[Union[str, List[str]]] = None, | |
| num_images_per_prompt: Optional[int] = 1, | |
| eta: Optional[float] = 0.0, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.FloatTensor] = None, | |
| prompt_embeds: Optional[torch.FloatTensor] = None, | |
| negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| ip_adapter_image: Optional[PipelineImageInput] = None, | |
| ip_adapter_image_embeds: Optional[List[torch.FloatTensor]] = None, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
| guidance_rescale: float = 0.0, | |
| original_size: Tuple[int, int] = None, | |
| crops_coords_top_left: Tuple[int, int] = (0, 0), | |
| target_size: Tuple[int, int] = None, | |
| negative_original_size: Optional[Tuple[int, int]] = None, | |
| negative_crops_coords_top_left: Tuple[int, int] = (0, 0), | |
| negative_target_size: Optional[Tuple[int, int]] = None, | |
| aesthetic_score: float = 6.0, | |
| negative_aesthetic_score: float = 2.5, | |
| clip_skip: Optional[int] = None, | |
| callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, | |
| callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
| mask: Union[ | |
| torch.FloatTensor, | |
| Image.Image, | |
| np.ndarray, | |
| List[torch.FloatTensor], | |
| List[Image.Image], | |
| List[np.ndarray], | |
| ] = None, | |
| blur=24, | |
| blur_compose=4, | |
| sample_mode="sample", | |
| **kwargs, | |
| ): | |
| r""" | |
| The call function to the pipeline for generation. | |
| Args: | |
| prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. | |
| image (`PipelineImageInput`): | |
| `Image` or tensor representing an image batch to be used as the starting point. This image might have mask painted on it. | |
| original_image (`PipelineImageInput`, *optional*): | |
| `Image` or tensor representing an image batch to be used for blending with the result. | |
| strength (`float`, *optional*, defaults to 0.8): | |
| Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a | |
| starting point and more noise is added the higher the `strength`. The number of denoising steps depends | |
| on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising | |
| process runs for the full number of iterations specified in `num_inference_steps`. A value of 1 | |
| essentially ignores `image`. | |
| num_inference_steps (`int`, *optional*, defaults to 50): | |
| The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
| expense of slower inference. This parameter is modulated by `strength`. | |
| guidance_scale (`float`, *optional*, defaults to 7.5): | |
| A higher guidance scale value encourages the model to generate images closely linked to the text | |
| ,`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. | |
| negative_prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to guide what to not include in image generation. If not defined, you need to | |
| pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). | |
| num_images_per_prompt (`int`, *optional*, defaults to 1): | |
| The number of images to generate per prompt. | |
| eta (`float`, *optional*, defaults to 0.0): | |
| Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies | |
| to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. | |
| generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
| A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make | |
| generation deterministic. | |
| prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not | |
| provided, text embeddings are generated from the `prompt` input argument. | |
| negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If | |
| not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. | |
| output_type (`str`, *optional*, defaults to `"pil"`): | |
| The output format of the generated image. Choose between `PIL.Image` or `np.array`. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a | |
| plain tuple. | |
| callback (`Callable`, *optional*): | |
| A function that calls every `callback_steps` steps during inference. The function is called with the | |
| following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. | |
| callback_steps (`int`, *optional*, defaults to 1): | |
| The frequency at which the `callback` function is called. If not specified, the callback is called at | |
| every step. | |
| cross_attention_kwargs (`dict`, *optional*): | |
| A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in | |
| [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
| blur (`int`, *optional*): | |
| blur to apply to mask | |
| blur_compose (`int`, *optional*): | |
| blur to apply for composition of original a | |
| mask (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`, *optional*): | |
| A mask with non-zero elements for the area to be inpainted. If not specified, no mask is applied. | |
| sample_mode (`str`, *optional*): | |
| control latents initialisation for the inpaint area, can be one of sample, argmax, random | |
| Examples: | |
| Returns: | |
| [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: | |
| If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, | |
| otherwise a `tuple` is returned where the first element is a list with the generated images and the | |
| second element is a list of `bool`s indicating whether the corresponding generated image contains | |
| "not-safe-for-work" (nsfw) content. | |
| """ | |
| # code adapted from parent class StableDiffusionXLImg2ImgPipeline | |
| callback = kwargs.pop("callback", None) | |
| callback_steps = kwargs.pop("callback_steps", None) | |
| if callback is not None: | |
| deprecate( | |
| "callback", | |
| "1.0.0", | |
| "Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`", | |
| ) | |
| if callback_steps is not None: | |
| deprecate( | |
| "callback_steps", | |
| "1.0.0", | |
| "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`", | |
| ) | |
| # 0. Check inputs. Raise error if not correct | |
| self.check_inputs( | |
| prompt, | |
| prompt_2, | |
| strength, | |
| num_inference_steps, | |
| callback_steps, | |
| negative_prompt, | |
| negative_prompt_2, | |
| prompt_embeds, | |
| negative_prompt_embeds, | |
| ip_adapter_image, | |
| ip_adapter_image_embeds, | |
| callback_on_step_end_tensor_inputs, | |
| ) | |
| self._guidance_scale = guidance_scale | |
| self._guidance_rescale = guidance_rescale | |
| self._clip_skip = clip_skip | |
| self._cross_attention_kwargs = cross_attention_kwargs | |
| self._denoising_end = denoising_end | |
| self._denoising_start = denoising_start | |
| self._interrupt = False | |
| # 1. Define call parameters | |
| # mask is computed from difference between image and original_image | |
| if image is not None: | |
| neq = np.any(np.array(original_image) != np.array(image), axis=-1) | |
| mask = neq.astype(np.uint8) * 255 | |
| else: | |
| assert mask is not None | |
| if not isinstance(mask, Image.Image): | |
| pil_mask = Image.fromarray(mask) | |
| if pil_mask.mode != "L": | |
| pil_mask = pil_mask.convert("L") | |
| mask_blur = self.blur_mask(pil_mask, blur) | |
| mask_compose = self.blur_mask(pil_mask, blur_compose) | |
| if original_image is None: | |
| original_image = image | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| device = self._execution_device | |
| # 2. Encode input prompt | |
| text_encoder_lora_scale = ( | |
| self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None | |
| ) | |
| ( | |
| prompt_embeds, | |
| negative_prompt_embeds, | |
| pooled_prompt_embeds, | |
| negative_pooled_prompt_embeds, | |
| ) = self.encode_prompt( | |
| prompt=prompt, | |
| prompt_2=prompt_2, | |
| device=device, | |
| num_images_per_prompt=num_images_per_prompt, | |
| do_classifier_free_guidance=self.do_classifier_free_guidance, | |
| negative_prompt=negative_prompt, | |
| negative_prompt_2=negative_prompt_2, | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| pooled_prompt_embeds=pooled_prompt_embeds, | |
| negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
| lora_scale=text_encoder_lora_scale, | |
| clip_skip=self.clip_skip, | |
| ) | |
| # 3. Preprocess image | |
| input_image = image if image is not None else original_image | |
| image = self.image_processor.preprocess(input_image) | |
| original_image = self.image_processor.preprocess(original_image) | |
| # 4. set timesteps | |
| def denoising_value_valid(dnv): | |
| return isinstance(dnv, float) and 0 < dnv < 1 | |
| timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps) | |
| timesteps, num_inference_steps = self.get_timesteps( | |
| num_inference_steps, | |
| strength, | |
| device, | |
| denoising_start=self.denoising_start if denoising_value_valid(self.denoising_start) else None, | |
| ) | |
| latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) | |
| add_noise = True if self.denoising_start is None else False | |
| # 5. Prepare latent variables | |
| # It is sampled from the latent distribution of the VAE | |
| # that's what we repaint | |
| latents = self.prepare_latents( | |
| image, | |
| latent_timestep, | |
| batch_size, | |
| num_images_per_prompt, | |
| prompt_embeds.dtype, | |
| device, | |
| generator, | |
| add_noise, | |
| sample_mode=sample_mode, | |
| ) | |
| # mean of the latent distribution | |
| # it is multiplied by self.vae.config.scaling_factor | |
| non_paint_latents = self.prepare_latents( | |
| original_image, | |
| latent_timestep, | |
| batch_size, | |
| num_images_per_prompt, | |
| prompt_embeds.dtype, | |
| device, | |
| generator, | |
| add_noise=False, | |
| sample_mode="argmax", | |
| ) | |
| if self.debug_save: | |
| init_img_from_latents = self.latents_to_img(non_paint_latents) | |
| init_img_from_latents[0].save("non_paint_latents.png") | |
| # 6. create latent mask | |
| latent_mask = self._make_latent_mask(latents, mask) | |
| # 7. Prepare extra step kwargs. | |
| extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
| height, width = latents.shape[-2:] | |
| height = height * self.vae_scale_factor | |
| width = width * self.vae_scale_factor | |
| original_size = original_size or (height, width) | |
| target_size = target_size or (height, width) | |
| # 8. Prepare added time ids & embeddings | |
| if negative_original_size is None: | |
| negative_original_size = original_size | |
| if negative_target_size is None: | |
| negative_target_size = target_size | |
| add_text_embeds = pooled_prompt_embeds | |
| if self.text_encoder_2 is None: | |
| text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1]) | |
| else: | |
| text_encoder_projection_dim = self.text_encoder_2.config.projection_dim | |
| add_time_ids, add_neg_time_ids = self._get_add_time_ids( | |
| original_size, | |
| crops_coords_top_left, | |
| target_size, | |
| aesthetic_score, | |
| negative_aesthetic_score, | |
| negative_original_size, | |
| negative_crops_coords_top_left, | |
| negative_target_size, | |
| dtype=prompt_embeds.dtype, | |
| text_encoder_projection_dim=text_encoder_projection_dim, | |
| ) | |
| add_time_ids = add_time_ids.repeat(batch_size * num_images_per_prompt, 1) | |
| if self.do_classifier_free_guidance: | |
| prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) | |
| add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0) | |
| add_neg_time_ids = add_neg_time_ids.repeat(batch_size * num_images_per_prompt, 1) | |
| add_time_ids = torch.cat([add_neg_time_ids, add_time_ids], dim=0) | |
| prompt_embeds = prompt_embeds.to(device) | |
| add_text_embeds = add_text_embeds.to(device) | |
| add_time_ids = add_time_ids.to(device) | |
| if ip_adapter_image is not None or ip_adapter_image_embeds is not None: | |
| image_embeds = self.prepare_ip_adapter_image_embeds( | |
| ip_adapter_image, | |
| ip_adapter_image_embeds, | |
| device, | |
| batch_size * num_images_per_prompt, | |
| self.do_classifier_free_guidance, | |
| ) | |
| # 10. Denoising loop | |
| num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) | |
| # 10.1 Apply denoising_end | |
| if ( | |
| self.denoising_end is not None | |
| and self.denoising_start is not None | |
| and denoising_value_valid(self.denoising_end) | |
| and denoising_value_valid(self.denoising_start) | |
| and self.denoising_start >= self.denoising_end | |
| ): | |
| raise ValueError( | |
| f"`denoising_start`: {self.denoising_start} cannot be larger than or equal to `denoising_end`: " | |
| + f" {self.denoising_end} when using type float." | |
| ) | |
| elif self.denoising_end is not None and denoising_value_valid(self.denoising_end): | |
| discrete_timestep_cutoff = int( | |
| round( | |
| self.scheduler.config.num_train_timesteps | |
| - (self.denoising_end * self.scheduler.config.num_train_timesteps) | |
| ) | |
| ) | |
| num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps))) | |
| timesteps = timesteps[:num_inference_steps] | |
| # 10.2 Optionally get Guidance Scale Embedding | |
| timestep_cond = None | |
| if self.unet.config.time_cond_proj_dim is not None: | |
| guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt) | |
| timestep_cond = self.get_guidance_scale_embedding( | |
| guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim | |
| ).to(device=device, dtype=latents.dtype) | |
| self._num_timesteps = len(timesteps) | |
| with self.progress_bar(total=num_inference_steps) as progress_bar: | |
| for i, t in enumerate(timesteps): | |
| if self.interrupt: | |
| continue | |
| shape = non_paint_latents.shape | |
| noise = randn_tensor(shape, generator=generator, device=device, dtype=latents.dtype) | |
| # noisy latent code of input image at current step | |
| orig_latents_t = non_paint_latents | |
| orig_latents_t = self.scheduler.add_noise(non_paint_latents, noise, t.unsqueeze(0)) | |
| # orig_latents_t (1 - latent_mask) + latents * latent_mask | |
| latents = torch.lerp(orig_latents_t, latents, latent_mask) | |
| if self.debug_save: | |
| img1 = self.latents_to_img(latents) | |
| t_str = str(t.int().item()) | |
| for i in range(3 - len(t_str)): | |
| t_str = "0" + t_str | |
| img1[0].save(f"step{t_str}.png") | |
| # expand the latents if we are doing classifier free guidance | |
| latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents | |
| latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
| # predict the noise residual | |
| added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids} | |
| if ip_adapter_image is not None or ip_adapter_image_embeds is not None: | |
| added_cond_kwargs["image_embeds"] = image_embeds | |
| noise_pred = self.unet( | |
| latent_model_input, | |
| t, | |
| encoder_hidden_states=prompt_embeds, | |
| timestep_cond=timestep_cond, | |
| cross_attention_kwargs=self.cross_attention_kwargs, | |
| added_cond_kwargs=added_cond_kwargs, | |
| return_dict=False, | |
| )[0] | |
| # perform guidance | |
| if self.do_classifier_free_guidance: | |
| noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
| noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
| if self.do_classifier_free_guidance and self.guidance_rescale > 0.0: | |
| # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf | |
| noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale) | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents_dtype = latents.dtype | |
| latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] | |
| if latents.dtype != latents_dtype: | |
| if torch.backends.mps.is_available(): | |
| # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272 | |
| latents = latents.to(latents_dtype) | |
| if callback_on_step_end is not None: | |
| callback_kwargs = {} | |
| for k in callback_on_step_end_tensor_inputs: | |
| callback_kwargs[k] = locals()[k] | |
| callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) | |
| latents = callback_outputs.pop("latents", latents) | |
| prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) | |
| negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) | |
| add_text_embeds = callback_outputs.pop("add_text_embeds", add_text_embeds) | |
| negative_pooled_prompt_embeds = callback_outputs.pop( | |
| "negative_pooled_prompt_embeds", negative_pooled_prompt_embeds | |
| ) | |
| add_time_ids = callback_outputs.pop("add_time_ids", add_time_ids) | |
| add_neg_time_ids = callback_outputs.pop("add_neg_time_ids", add_neg_time_ids) | |
| # call the callback, if provided | |
| if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
| progress_bar.update() | |
| if callback is not None and i % callback_steps == 0: | |
| step_idx = i // getattr(self.scheduler, "order", 1) | |
| callback(step_idx, t, latents) | |
| if XLA_AVAILABLE: | |
| xm.mark_step() | |
| if not output_type == "latent": | |
| # make sure the VAE is in float32 mode, as it overflows in float16 | |
| needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast | |
| if needs_upcasting: | |
| self.upcast_vae() | |
| elif latents.dtype != self.vae.dtype: | |
| if torch.backends.mps.is_available(): | |
| # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272 | |
| self.vae = self.vae.to(latents.dtype) | |
| if self.debug_save: | |
| image_gen = self.latents_to_img(latents) | |
| image_gen[0].save("from_latent.png") | |
| if latent_mask is not None: | |
| # interpolate with latent mask | |
| latents = torch.lerp(non_paint_latents, latents, latent_mask) | |
| latents = self.denormalize(latents) | |
| image = self.vae.decode(latents, return_dict=False)[0] | |
| m = mask_compose.permute(2, 0, 1).unsqueeze(0).to(image) | |
| img_compose = m * image + (1 - m) * original_image.to(image) | |
| image = img_compose | |
| # cast back to fp16 if needed | |
| if needs_upcasting: | |
| self.vae.to(dtype=torch.float16) | |
| else: | |
| image = latents | |
| # apply watermark if available | |
| if self.watermark is not None: | |
| image = self.watermark.apply_watermark(image) | |
| image = self.image_processor.postprocess(image, output_type=output_type) | |
| # Offload all models | |
| self.maybe_free_model_hooks() | |
| if not return_dict: | |
| return (image,) | |
| return StableDiffusionXLPipelineOutput(images=image) | |
| def _make_latent_mask(self, latents, mask): | |
| if mask is not None: | |
| latent_mask = [] | |
| if not isinstance(mask, list): | |
| tmp_mask = [mask] | |
| else: | |
| tmp_mask = mask | |
| _, l_channels, l_height, l_width = latents.shape | |
| for m in tmp_mask: | |
| if not isinstance(m, Image.Image): | |
| if len(m.shape) == 2: | |
| m = m[..., np.newaxis] | |
| if m.max() > 1: | |
| m = m / 255.0 | |
| m = self.image_processor.numpy_to_pil(m)[0] | |
| if m.mode != "L": | |
| m = m.convert("L") | |
| resized = self.image_processor.resize(m, l_height, l_width) | |
| if self.debug_save: | |
| resized.save("latent_mask.png") | |
| latent_mask.append(np.repeat(np.array(resized)[np.newaxis, :, :], l_channels, axis=0)) | |
| latent_mask = torch.as_tensor(np.stack(latent_mask)).to(latents) | |
| latent_mask = latent_mask / max(latent_mask.max(), 1) | |
| return latent_mask | |
| def prepare_latents( | |
| self, | |
| image, | |
| timestep, | |
| batch_size, | |
| num_images_per_prompt, | |
| dtype, | |
| device, | |
| generator=None, | |
| add_noise=True, | |
| sample_mode: str = "sample", | |
| ): | |
| if not isinstance(image, (torch.Tensor, Image.Image, list)): | |
| raise ValueError( | |
| f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}" | |
| ) | |
| # Offload text encoder if `enable_model_cpu_offload` was enabled | |
| if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: | |
| self.text_encoder_2.to("cpu") | |
| torch.cuda.empty_cache() | |
| image = image.to(device=device, dtype=dtype) | |
| batch_size = batch_size * num_images_per_prompt | |
| if image.shape[1] == 4: | |
| init_latents = image | |
| elif sample_mode == "random": | |
| height, width = image.shape[-2:] | |
| num_channels_latents = self.unet.config.in_channels | |
| latents = self.random_latents( | |
| batch_size, | |
| num_channels_latents, | |
| height, | |
| width, | |
| dtype, | |
| device, | |
| generator, | |
| ) | |
| return self.vae.config.scaling_factor * latents | |
| else: | |
| # make sure the VAE is in float32 mode, as it overflows in float16 | |
| if self.vae.config.force_upcast: | |
| image = image.float() | |
| self.vae.to(dtype=torch.float32) | |
| if isinstance(generator, list) and len(generator) != batch_size: | |
| raise ValueError( | |
| f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
| f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
| ) | |
| elif isinstance(generator, list): | |
| init_latents = [ | |
| retrieve_latents( | |
| self.vae.encode(image[i : i + 1]), generator=generator[i], sample_mode=sample_mode | |
| ) | |
| for i in range(batch_size) | |
| ] | |
| init_latents = torch.cat(init_latents, dim=0) | |
| else: | |
| init_latents = retrieve_latents(self.vae.encode(image), generator=generator, sample_mode=sample_mode) | |
| if self.vae.config.force_upcast: | |
| self.vae.to(dtype) | |
| init_latents = init_latents.to(dtype) | |
| init_latents = self.vae.config.scaling_factor * init_latents | |
| if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0: | |
| # expand init_latents for batch_size | |
| additional_image_per_prompt = batch_size // init_latents.shape[0] | |
| init_latents = torch.cat([init_latents] * additional_image_per_prompt, dim=0) | |
| elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0: | |
| raise ValueError( | |
| f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts." | |
| ) | |
| else: | |
| init_latents = torch.cat([init_latents], dim=0) | |
| if add_noise: | |
| shape = init_latents.shape | |
| noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
| # get latents | |
| init_latents = self.scheduler.add_noise(init_latents, noise, timestep) | |
| latents = init_latents | |
| return latents | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents | |
| def random_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): | |
| shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor) | |
| if isinstance(generator, list) and len(generator) != batch_size: | |
| raise ValueError( | |
| f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
| f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
| ) | |
| if latents is None: | |
| latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
| else: | |
| latents = latents.to(device) | |
| # scale the initial noise by the standard deviation required by the scheduler | |
| latents = latents * self.scheduler.init_noise_sigma | |
| return latents | |
| def denormalize(self, latents): | |
| # unscale/denormalize the latents | |
| # denormalize with the mean and std if available and not None | |
| has_latents_mean = hasattr(self.vae.config, "latents_mean") and self.vae.config.latents_mean is not None | |
| has_latents_std = hasattr(self.vae.config, "latents_std") and self.vae.config.latents_std is not None | |
| if has_latents_mean and has_latents_std: | |
| latents_mean = ( | |
| torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1).to(latents.device, latents.dtype) | |
| ) | |
| latents_std = torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1).to(latents.device, latents.dtype) | |
| latents = latents * latents_std / self.vae.config.scaling_factor + latents_mean | |
| else: | |
| latents = latents / self.vae.config.scaling_factor | |
| return latents | |
| def latents_to_img(self, latents): | |
| l1 = self.denormalize(latents) | |
| img1 = self.vae.decode(l1, return_dict=False)[0] | |
| img1 = self.image_processor.postprocess(img1, output_type="pil", do_denormalize=[True]) | |
| return img1 | |
| def blur_mask(self, pil_mask, blur): | |
| mask_blur = pil_mask.filter(ImageFilter.GaussianBlur(radius=blur)) | |
| mask_blur = np.array(mask_blur) | |
| return torch.from_numpy(np.tile(mask_blur / mask_blur.max(), (3, 1, 1)).transpose(1, 2, 0)) | |