Spaces:
Runtime error
Runtime error
| import spaces | |
| import gradio as gr | |
| import time | |
| import torch | |
| import numpy as np | |
| from PIL import Image | |
| from segment_utils import( | |
| segment_image, | |
| restore_result, | |
| ) | |
| from diffusers import ( | |
| StableDiffusionControlNetPipeline, | |
| ControlNetModel, | |
| DDIMScheduler, | |
| DPMSolverMultistepScheduler, | |
| EulerAncestralDiscreteScheduler, | |
| UniPCMultistepScheduler, | |
| ) | |
| from controlnet_aux import ( | |
| CannyDetector, | |
| LineartDetector, | |
| PidiNetDetector, | |
| HEDdetector, | |
| ) | |
| BASE_MODEL = "stable-diffusion-v1-5/stable-diffusion-v1-5" | |
| DEVICE = "cuda" if torch.cuda.is_available() else "cpu" | |
| DEFAULT_EDIT_PROMPT = "change hair to blue" | |
| DEFAULT_CATEGORY = "hair" | |
| canny_detector = CannyDetector() | |
| lineart_detector = LineartDetector.from_pretrained("lllyasviel/Annotators") | |
| lineart_detector = lineart_detector.to(DEVICE) | |
| pidiNet_detector = PidiNetDetector.from_pretrained('lllyasviel/Annotators') | |
| pidiNet_detector = pidiNet_detector.to(DEVICE) | |
| hed_detector = HEDdetector.from_pretrained('lllyasviel/Annotators') | |
| hed_detector = hed_detector.to(DEVICE) | |
| controlnet = [ | |
| ControlNetModel.from_pretrained( | |
| "lllyasviel/control_v11e_sd15_ip2p", | |
| torch_dtype=torch.float16, | |
| ), | |
| ControlNetModel.from_pretrained( | |
| "lllyasviel/control_v11p_sd15_lineart", | |
| torch_dtype=torch.float16, | |
| ), | |
| ] | |
| basepipeline = StableDiffusionControlNetPipeline.from_pretrained( | |
| BASE_MODEL, | |
| torch_dtype=torch.float16, | |
| use_safetensors=True, | |
| controlnet=controlnet, | |
| ) | |
| basepipeline.scheduler = UniPCMultistepScheduler.from_config(basepipeline.scheduler.config) | |
| basepipeline = basepipeline.to(DEVICE) | |
| basepipeline.enable_model_cpu_offload() | |
| def image_to_image( | |
| input_image: Image, | |
| edit_prompt: str, | |
| seed: int, | |
| num_steps: int, | |
| guidance_scale: float, | |
| image_guidance_scale: float, | |
| generate_size: int, | |
| cond_scale1: float = 1.2, | |
| cond_scale2: float = 1.2, | |
| ): | |
| run_task_time = 0 | |
| time_cost_str = '' | |
| run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str) | |
| lineart_image = lineart_detector(input_image, 384, generate_size) | |
| cond_image = [input_image, lineart_image] | |
| generator = torch.Generator(device=DEVICE).manual_seed(seed) | |
| generated_image = basepipeline( | |
| generator=generator, | |
| prompt=edit_prompt, | |
| image=cond_image, | |
| height=generate_size, | |
| width=generate_size, | |
| guidance_scale=guidance_scale, | |
| image_guidance_scale=image_guidance_scale, | |
| num_inference_steps=num_steps, | |
| controlnet_conditioning_scale=[cond_scale1, cond_scale2], | |
| ).images[0] | |
| run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str) | |
| return generated_image, time_cost_str | |
| def make_inpaint_condition(image, image_mask): | |
| image = np.array(image.convert("RGB")).astype(np.float32) / 255.0 | |
| image_mask = np.array(image_mask.convert("L")).astype(np.float32) / 255.0 | |
| assert image.shape[0:1] == image_mask.shape[0:1], "image and image_mask must have the same image size" | |
| image[image_mask > 0.5] = -1.0 # set as masked pixel | |
| image = np.expand_dims(image, 0).transpose(0, 3, 1, 2) | |
| image = torch.from_numpy(image) | |
| return image | |
| def get_time_cost(run_task_time, time_cost_str): | |
| now_time = int(time.time()*1000) | |
| if run_task_time == 0: | |
| time_cost_str = 'start' | |
| else: | |
| if time_cost_str != '': | |
| time_cost_str += f'-->' | |
| time_cost_str += f'{now_time - run_task_time}' | |
| run_task_time = now_time | |
| return run_task_time, time_cost_str | |
| def create_demo() -> gr.Blocks: | |
| with gr.Blocks() as demo: | |
| croper = gr.State() | |
| with gr.Row(): | |
| with gr.Column(): | |
| edit_prompt = gr.Textbox(lines=1, label="Edit Prompt", value=DEFAULT_EDIT_PROMPT) | |
| generate_size = gr.Number(label="Generate Size", value=512) | |
| with gr.Column(): | |
| num_steps = gr.Slider(minimum=1, maximum=100, value=20, step=1, label="Num Steps") | |
| guidance_scale = gr.Slider(minimum=0, maximum=30, value=5, step=0.5, label="Guidance Scale") | |
| image_guidance_scale = gr.Slider(minimum=0, maximum=30, value=1.5, step=0.1, label="Image Guidance Scale") | |
| with gr.Column(): | |
| with gr.Accordion("Advanced Options", open=False): | |
| mask_expansion = gr.Number(label="Mask Expansion", value=50, visible=True) | |
| mask_dilation = gr.Slider(minimum=0, maximum=10, value=2, step=1, label="Mask Dilation") | |
| seed = gr.Number(label="Seed", value=8) | |
| category = gr.Textbox(label="Category", value=DEFAULT_CATEGORY, visible=False) | |
| cond_scale1 = gr.Slider(minimum=0, maximum=3, value=1.2, step=0.1, label="Cond_scale1") | |
| cond_scale2 = gr.Slider(minimum=0, maximum=3, value=1.2, step=0.1, label="Cond_scale2") | |
| g_btn = gr.Button("Edit Image") | |
| with gr.Row(): | |
| with gr.Column(): | |
| input_image = gr.Image(label="Input Image", type="pil") | |
| with gr.Column(): | |
| restored_image = gr.Image(label="Restored Image", type="pil", interactive=False) | |
| with gr.Column(): | |
| origin_area_image = gr.Image(label="Origin Area Image", type="pil", interactive=False) | |
| generated_image = gr.Image(label="Generated Image", type="pil", interactive=False) | |
| generated_cost = gr.Textbox(label="Time cost by step (ms):", visible=True, interactive=False) | |
| g_btn.click( | |
| fn=segment_image, | |
| inputs=[input_image, category, generate_size, mask_expansion, mask_dilation], | |
| outputs=[origin_area_image, croper], | |
| ).success( | |
| fn=image_to_image, | |
| inputs=[origin_area_image, edit_prompt,seed, num_steps, guidance_scale, image_guidance_scale, generate_size, cond_scale1, cond_scale2], | |
| outputs=[generated_image, generated_cost], | |
| ).success( | |
| fn=restore_result, | |
| inputs=[croper, category, generated_image], | |
| outputs=[restored_image], | |
| ) | |
| return demo |