Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -14,7 +14,7 @@ model.eval()
|
|
14 |
model.to('cpu')
|
15 |
|
16 |
# Define the function that generates text from a prompt
|
17 |
-
def generate_text(prompt):
|
18 |
input_tokens = tokenizer.encode(prompt, return_tensors='pt')
|
19 |
input_tokens = input_tokens.to('cpu')
|
20 |
|
@@ -23,15 +23,34 @@ def generate_text(prompt):
|
|
23 |
for _ in range(80): # Adjust the range to control the number of tokens generated
|
24 |
with torch.no_grad():
|
25 |
outputs = model(input_tokens)
|
26 |
-
predictions = outputs.logits
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
next_token = torch.multinomial(torch.softmax(predictions[:, -1, :], dim=-1), 1)
|
28 |
|
29 |
input_tokens = torch.cat((input_tokens, next_token), dim=1)
|
30 |
|
31 |
decoded_token = tokenizer.decode(next_token.item())
|
32 |
generated_text += decoded_token # Append the new token to the generated text
|
|
|
|
|
33 |
yield generated_text # Yield the entire generated text so far
|
34 |
|
35 |
-
# Create a Gradio interface with a text input and a text output
|
36 |
-
interface = gr.Interface(
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
model.to('cpu')
|
15 |
|
16 |
# Define the function that generates text from a prompt
|
17 |
+
def generate_text(prompt, temperature, top_p):
|
18 |
input_tokens = tokenizer.encode(prompt, return_tensors='pt')
|
19 |
input_tokens = input_tokens.to('cpu')
|
20 |
|
|
|
23 |
for _ in range(80): # Adjust the range to control the number of tokens generated
|
24 |
with torch.no_grad():
|
25 |
outputs = model(input_tokens)
|
26 |
+
predictions = outputs.logits / temperature
|
27 |
+
sorted_logits, sorted_indices = torch.sort(predictions[:, -1, :], descending=True)
|
28 |
+
cumulative_probs = torch.cumsum(torch.softmax(sorted_logits, dim=-1), dim=-1)
|
29 |
+
sorted_indices_to_remove = cumulative_probs > top_p
|
30 |
+
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
|
31 |
+
sorted_indices_to_remove[..., 0] = 0
|
32 |
+
indices_to_remove = sorted_indices[sorted_indices_to_remove]
|
33 |
+
predictions[:, -1, indices_to_remove] = -float('Inf')
|
34 |
next_token = torch.multinomial(torch.softmax(predictions[:, -1, :], dim=-1), 1)
|
35 |
|
36 |
input_tokens = torch.cat((input_tokens, next_token), dim=1)
|
37 |
|
38 |
decoded_token = tokenizer.decode(next_token.item())
|
39 |
generated_text += decoded_token # Append the new token to the generated text
|
40 |
+
if decoded_token == "#": # Stop if the end of sequence token is generated
|
41 |
+
break
|
42 |
yield generated_text # Yield the entire generated text so far
|
43 |
|
44 |
+
# Create a Gradio interface with a text input, sliders for temperature and top_p, and a text output
|
45 |
+
interface = gr.Interface(
|
46 |
+
fn=generate_text,
|
47 |
+
inputs=[
|
48 |
+
gr.inputs.Textbox(lines=2, placeholder="Enter your prompt here..."),
|
49 |
+
gr.inputs.Slider(minimum=0.1, maximum=1.0, default=1.0, label="Temperature"),
|
50 |
+
gr.inputs.Slider(minimum=0.1, maximum=1.0, default=0.9, label="Top-p")
|
51 |
+
],
|
52 |
+
outputs='text',
|
53 |
+
live=False
|
54 |
+
)
|
55 |
+
|
56 |
+
interface.launch()
|