import gradio as gr import torch from transformers import AutoTokenizer, AutoModelForCausalLM import os # Get the Hugging Face token from the environment variable HF_TOKEN = os.environ.get("HF_TOKEN") # Load the tokenizer and model tokenizer = AutoTokenizer.from_pretrained('EleutherAI/GPT-NeoX-20B', use_auth_token=HF_TOKEN) model = AutoModelForCausalLM.from_pretrained('skylersterling/SentimentGPT', use_auth_token=HF_TOKEN) model.eval() model.to('cpu') # Define the function that generates text from a prompt def generate_text(prompt, temperature=0.1, top_p=0.2, max_tokens=3): prompt_with_eos = prompt + " >" # Add the "EOS" to the end of the prompt input_tokens = tokenizer.encode(prompt_with_eos, return_tensors='pt') print(prompt_with_eos) input_tokens = input_tokens.to('cpu') generated_text = prompt_with_eos # Start with the initial prompt plus "EOS" prompt_length = len(generated_text) for _ in range(max_tokens): # Adjust the range to control the number of tokens generated with torch.no_grad(): outputs = model(input_tokens) predictions = outputs.logits[:, -1, :] / temperature sorted_logits, sorted_indices = torch.sort(predictions, descending=True) cumulative_probs = torch.cumsum(torch.softmax(sorted_logits, dim=-1), dim=-1) sorted_indices_to_remove = cumulative_probs > top_p sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone() sorted_indices_to_remove[..., 0] = 0 indices_to_remove = sorted_indices[sorted_indices_to_remove] predictions[:, indices_to_remove] = -float('Inf') next_token = torch.multinomial(torch.softmax(predictions, dim=-1), 1) input_tokens = torch.cat((input_tokens, next_token), dim=1) decoded_token = tokenizer.decode(next_token.item()) generated_text += decoded_token # Append the new token to the generated text if decoded_token == "<": # Stop if the end of sequence token is generated break # Check if the generated text contains "0" or "1" and return the appropriate sentiment message if "1" in generated_text: return "The sentiment is positive." elif "0" in generated_text: return "The sentiment is negative." else: return "Invalid" # Create a Gradio interface with a text input, sliders for temperature and top_p, and a text output interface = gr.Interface( fn=generate_text, inputs=[ gr.Textbox(lines=2, placeholder="Enter your prompt here...") ], outputs=gr.Textbox(), live=False, description="SentimentGPT processes the sequence and returns a reasonably accurate guess of whether the sentiment behind the input is positive or negative." ) interface.launch()