Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import GPT2Tokenizer, GPT2LMHeadModel
|
4 |
+
import os
|
5 |
+
|
6 |
+
# Get the Hugging Face token from the environment variable
|
7 |
+
HF_TOKEN = os.environ.get("HF_TOKEN")
|
8 |
+
|
9 |
+
# Load the tokenizer and model
|
10 |
+
tokenizer = GPT2Tokenizer.from_pretrained('gpt2', use_auth_token=HF_TOKEN)
|
11 |
+
model = GPT2LMHeadModel.from_pretrained('skylersterling/SentimentGPT', use_auth_token=HF_TOKEN)
|
12 |
+
model.eval()
|
13 |
+
model.to('cpu')
|
14 |
+
|
15 |
+
# Define the function that generates text from a prompt
|
16 |
+
def generate_text(prompt, temperature, top_p):
|
17 |
+
prompt_with_eos = prompt + " > " # Add the "EOS" to the end of the prompt
|
18 |
+
input_tokens = tokenizer.encode(prompt_with_eos, return_tensors='pt')
|
19 |
+
|
20 |
+
input_tokens = input_tokens.to('cpu')
|
21 |
+
|
22 |
+
generated_text = prompt_with_eos # Start with the initial prompt plus "EOS"
|
23 |
+
prompt_length = len(generated_text)
|
24 |
+
|
25 |
+
for _ in range(80): # Adjust the range to control the number of tokens generated
|
26 |
+
with torch.no_grad():
|
27 |
+
outputs = model(input_tokens)
|
28 |
+
predictions = outputs.logits[:, -1, :] / temperature
|
29 |
+
sorted_logits, sorted_indices = torch.sort(predictions, descending=True)
|
30 |
+
cumulative_probs = torch.cumsum(torch.softmax(sorted_logits, dim=-1), dim=-1)
|
31 |
+
sorted_indices_to_remove = cumulative_probs > top_p
|
32 |
+
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
|
33 |
+
sorted_indices_to_remove[..., 0] = 0
|
34 |
+
indices_to_remove = sorted_indices[sorted_indices_to_remove]
|
35 |
+
predictions[:, indices_to_remove] = -float('Inf')
|
36 |
+
next_token = torch.multinomial(torch.softmax(predictions, dim=-1), 1)
|
37 |
+
|
38 |
+
input_tokens = torch.cat((input_tokens, next_token), dim=1)
|
39 |
+
|
40 |
+
decoded_token = tokenizer.decode(next_token.item())
|
41 |
+
generated_text += decoded_token # Append the new token to the generated text
|
42 |
+
if decoded_token == "#": # Stop if the end of sequence token is generated
|
43 |
+
break
|
44 |
+
yield generated_text[prompt_length:] # Yield the generated text excluding the initial prompt plus "EOS"
|
45 |
+
|
46 |
+
# Create a Gradio interface with a text input, sliders for temperature and top_p, and a text output
|
47 |
+
interface = gr.Interface(
|
48 |
+
fn=generate_text,
|
49 |
+
inputs=[
|
50 |
+
gr.Textbox(lines=2, placeholder="Enter your prompt here..."),
|
51 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.3, label="Temperature"),
|
52 |
+
gr.Slider(minimum=0.05, maximum=1.0, value=0.3, label="Top-p")
|
53 |
+
],
|
54 |
+
outputs=gr.Textbox(),
|
55 |
+
live=False,
|
56 |
+
description="SentimentGPT processes the sequence and returns a reasonably accurate guess of whether the sentiment behind the input is positive or negative."
|
57 |
+
)
|
58 |
+
|
59 |
+
interface.launch()
|