Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,171 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
import numpy as np
|
| 4 |
+
from PIL import Image
|
| 5 |
+
import torchvision.transforms as transforms
|
| 6 |
+
from transformers import pipeline
|
| 7 |
+
from scipy.ndimage import gaussian_filter
|
| 8 |
+
|
| 9 |
+
def preprocess_image(image, target_size=(512, 512)):
|
| 10 |
+
"""Preprocess the input image"""
|
| 11 |
+
if isinstance(image, str):
|
| 12 |
+
image = Image.open(image)
|
| 13 |
+
elif isinstance(image, np.ndarray):
|
| 14 |
+
image = Image.fromarray(image)
|
| 15 |
+
|
| 16 |
+
# Calculate aspect ratio preserving resize
|
| 17 |
+
aspect_ratio = image.size[0] / image.size[1]
|
| 18 |
+
if aspect_ratio > 1:
|
| 19 |
+
new_width = int(target_size[0] * aspect_ratio)
|
| 20 |
+
new_height = target_size[1]
|
| 21 |
+
else:
|
| 22 |
+
new_width = target_size[0]
|
| 23 |
+
new_height = int(target_size[1] / aspect_ratio)
|
| 24 |
+
|
| 25 |
+
preprocess = transforms.Compose([
|
| 26 |
+
transforms.Resize((new_height, new_width)),
|
| 27 |
+
transforms.CenterCrop(target_size),
|
| 28 |
+
])
|
| 29 |
+
|
| 30 |
+
return preprocess(image)
|
| 31 |
+
|
| 32 |
+
def estimate_depth(image, pipe):
|
| 33 |
+
"""Estimate depth using the Depth-Anything model"""
|
| 34 |
+
depth_output = pipe(image)
|
| 35 |
+
depth_map = depth_output["depth"]
|
| 36 |
+
depth_map = np.array(depth_map) / 16.67
|
| 37 |
+
return depth_map
|
| 38 |
+
|
| 39 |
+
def apply_depth_aware_blur(image, depth_map, max_sigma, min_sigma):
|
| 40 |
+
"""Apply variable Gaussian blur based on depth values"""
|
| 41 |
+
image_array = np.array(image)
|
| 42 |
+
blurred = np.zeros_like(image_array, dtype=np.float32)
|
| 43 |
+
|
| 44 |
+
# Calculate sigma for each depth value
|
| 45 |
+
sigmas = np.interp(depth_map, [depth_map.min(), depth_map.max()], [min_sigma, max_sigma])
|
| 46 |
+
unique_sigmas = np.unique(sigmas)
|
| 47 |
+
blur_stack = {}
|
| 48 |
+
|
| 49 |
+
# Create blurred versions for each unique sigma
|
| 50 |
+
for sigma in unique_sigmas:
|
| 51 |
+
if sigma > 0:
|
| 52 |
+
blurred_image = np.zeros_like(image_array, dtype=np.float32)
|
| 53 |
+
for channel in range(3):
|
| 54 |
+
blurred_image[:, :, channel] = gaussian_filter(
|
| 55 |
+
image_array[:, :, channel].astype(np.float32),
|
| 56 |
+
sigma=sigma
|
| 57 |
+
)
|
| 58 |
+
blur_stack[sigma] = blurred_image
|
| 59 |
+
|
| 60 |
+
# Combine blurred versions
|
| 61 |
+
for sigma in unique_sigmas:
|
| 62 |
+
if sigma > 0:
|
| 63 |
+
mask = (sigmas == sigma)
|
| 64 |
+
mask_3d = np.stack([mask] * 3, axis=2)
|
| 65 |
+
blurred += mask_3d * blur_stack[sigma]
|
| 66 |
+
else:
|
| 67 |
+
mask = (sigmas == 0)
|
| 68 |
+
mask_3d = np.stack([mask] * 3, axis=2)
|
| 69 |
+
blurred += mask_3d * image_array
|
| 70 |
+
|
| 71 |
+
return Image.fromarray(blurred.astype(np.uint8))
|
| 72 |
+
|
| 73 |
+
def apply_gaussian_blur(image, sigma):
|
| 74 |
+
"""Apply uniform Gaussian blur"""
|
| 75 |
+
image_array = np.array(image)
|
| 76 |
+
blurred = np.zeros_like(image_array)
|
| 77 |
+
|
| 78 |
+
for channel in range(3):
|
| 79 |
+
blurred[:, :, channel] = gaussian_filter(
|
| 80 |
+
image_array[:, :, channel],
|
| 81 |
+
sigma=sigma
|
| 82 |
+
)
|
| 83 |
+
|
| 84 |
+
return Image.fromarray(blurred.astype(np.uint8))
|
| 85 |
+
|
| 86 |
+
# Initialize depth estimation pipeline
|
| 87 |
+
pipe = pipeline(
|
| 88 |
+
task="depth-estimation",
|
| 89 |
+
model="depth-anything/Depth-Anything-V2-Small-hf",
|
| 90 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
| 91 |
+
device=0 if torch.cuda.is_available() else -1
|
| 92 |
+
)
|
| 93 |
+
|
| 94 |
+
def process_image(image, blur_type, gaussian_sigma, lens_min_sigma, lens_max_sigma):
|
| 95 |
+
"""Main processing function for Gradio interface"""
|
| 96 |
+
processed_image = preprocess_image(image)
|
| 97 |
+
|
| 98 |
+
if blur_type == "Gaussian Blur":
|
| 99 |
+
result = apply_gaussian_blur(processed_image, gaussian_sigma)
|
| 100 |
+
else: # Lens Blur
|
| 101 |
+
depth_map = estimate_depth(processed_image, pipe)
|
| 102 |
+
result = apply_depth_aware_blur(processed_image, depth_map, lens_max_sigma, lens_min_sigma)
|
| 103 |
+
|
| 104 |
+
return result
|
| 105 |
+
|
| 106 |
+
# Create Gradio interface
|
| 107 |
+
with gr.Blocks() as demo:
|
| 108 |
+
gr.Markdown("# Image Blur Effects Demo")
|
| 109 |
+
gr.Markdown("Apply Gaussian or Lens (Depth-aware) blur to your images")
|
| 110 |
+
|
| 111 |
+
with gr.Row():
|
| 112 |
+
with gr.Column():
|
| 113 |
+
input_image = gr.Image(label="Input Image", type="numpy")
|
| 114 |
+
blur_type = gr.Radio(
|
| 115 |
+
choices=["Gaussian Blur", "Lens Blur"],
|
| 116 |
+
label="Blur Effect",
|
| 117 |
+
value="Gaussian Blur"
|
| 118 |
+
)
|
| 119 |
+
|
| 120 |
+
with gr.Column(visible=True) as gaussian_controls:
|
| 121 |
+
gaussian_sigma = gr.Slider(
|
| 122 |
+
minimum=0, maximum=20, value=5,
|
| 123 |
+
label="Gaussian Blur Sigma",
|
| 124 |
+
step=0.5
|
| 125 |
+
)
|
| 126 |
+
|
| 127 |
+
with gr.Column() as lens_controls:
|
| 128 |
+
lens_min_sigma = gr.Slider(
|
| 129 |
+
minimum=0, maximum=10, value=0,
|
| 130 |
+
label="Minimum Blur (Near)",
|
| 131 |
+
step=0.5
|
| 132 |
+
)
|
| 133 |
+
lens_max_sigma = gr.Slider(
|
| 134 |
+
minimum=0, maximum=20, value=10,
|
| 135 |
+
label="Maximum Blur (Far)",
|
| 136 |
+
step=0.5
|
| 137 |
+
)
|
| 138 |
+
|
| 139 |
+
process_btn = gr.Button("Apply Blur")
|
| 140 |
+
|
| 141 |
+
with gr.Column():
|
| 142 |
+
output_image = gr.Image(label="Output Image")
|
| 143 |
+
|
| 144 |
+
# Handle visibility of controls based on blur type selection
|
| 145 |
+
def update_controls(blur_type):
|
| 146 |
+
return {
|
| 147 |
+
gaussian_controls: blur_type == "Gaussian Blur",
|
| 148 |
+
lens_controls: blur_type == "Lens Blur"
|
| 149 |
+
}
|
| 150 |
+
|
| 151 |
+
blur_type.change(
|
| 152 |
+
fn=update_controls,
|
| 153 |
+
inputs=[blur_type],
|
| 154 |
+
outputs=[gaussian_controls, lens_controls]
|
| 155 |
+
)
|
| 156 |
+
|
| 157 |
+
# Process image when button is clicked
|
| 158 |
+
process_btn.click(
|
| 159 |
+
fn=process_image,
|
| 160 |
+
inputs=[
|
| 161 |
+
input_image,
|
| 162 |
+
blur_type,
|
| 163 |
+
gaussian_sigma,
|
| 164 |
+
lens_min_sigma,
|
| 165 |
+
lens_max_sigma
|
| 166 |
+
],
|
| 167 |
+
outputs=output_image
|
| 168 |
+
)
|
| 169 |
+
|
| 170 |
+
# Launch the demo
|
| 171 |
+
demo.launch()
|