Spaces:
Running
Running
| import streamlit as st | |
| from streamlit.logger import get_logger | |
| from transformers import pipeline | |
| import datasets | |
| import pandas as pd | |
| from huggingface_hub import login | |
| LOGGER = get_logger(__name__) | |
| def get_df() ->object: | |
| ds = datasets.load_dataset('sivan22/orach-chaim') | |
| df = ds['train'].to_pandas() | |
| def clean(s)->str: | |
| return s.replace(" ","") | |
| df['seif']= df['seif'].apply(clean) | |
| return df | |
| def get_model()->object: | |
| model = "sivan22/halacha-siman-seif-classifier" | |
| classifier = pipeline("text-classification",model=model,top_k=None) | |
| return classifier | |
| def get_predicts(classifier,input)->str: | |
| predicts = classifier(input) | |
| return predicts | |
| def run(): | |
| st.set_page_config( | |
| page_title="讞讬驻讜砖 讞讻诐 讘砖讜诇讞谉 注专讜讱", | |
| page_icon="馃摎", | |
| ) | |
| st.write("# 讞讬驻讜砖 讞讻诐 讘砖讜诇讞谉 注专讜讱") | |
| classifier = get_model() | |
| df = get_df() | |
| user_input = st.text_input('讻转讜讘 讻讗谉 讗转 砖讗诇转讱', placeholder='讻诪讛 谞专讜转 诪讚诇讬拽讬诐 讘讻诇 诇讬诇讛 诪诇讬诇讜转 讛讞谞讜讻讛') | |
| num_of_results = st.sidebar.slider('诪住驻专 讛转讜爪讗讜转 砖讘专爪讜谞讱 诇讛爪讬讙:',1,25,5) | |
| if st.button('讞驻砖') and user_input!="": | |
| for prediction in get_predicts(classifier,user_input)[0][:num_of_results]: | |
| siman = prediction['label'].split(' ')[0] | |
| seif = prediction['label'].split(' ')[1] | |
| rows = df[((df["bookname"] == " 砖诇讞谉 注专讜讱 - 讗讜专讞 讞讬讬诐 ") | (df["bookname"] ==" 诪砖谞讛 讘专讜专讛")) & | |
| (df["siman"] == siman) & | |
| (df["seif"] == seif) ] | |
| rows = rows.sort_values(["bookname"],ascending=False) | |
| st.write(('住讬诪谉 ' + siman + ' 住注讬祝 ' + seif), rows[['text','bookname','sek','seif','siman',]]) | |
| if __name__ == "__main__": | |
| run() | |