File size: 7,858 Bytes
f3b5726
 
 
 
afdbd29
f3b5726
 
 
b53446d
f3b5726
 
1b16d82
f3b5726
 
 
 
b53446d
f3b5726
 
 
 
 
b53446d
 
 
f3b5726
 
ec22521
f3b5726
 
 
 
ec22521
f3b5726
 
 
2678864
f3b5726
e5c7e80
1f1c451
 
 
 
f3b5726
 
2678864
 
 
f3b5726
 
 
b53446d
 
 
 
 
 
 
f3b5726
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b53446d
 
 
 
f3b5726
 
b53446d
 
 
 
 
 
f3b5726
 
 
 
d47afee
9e3ae03
2678864
 
f3b5726
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25cf50e
f3b5726
 
 
 
 
 
ec22521
 
f3b5726
ec22521
f3b5726
 
 
 
 
 
 
 
 
 
 
9e3ae03
 
 
f3b5726
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b53446d
f3b5726
b53446d
 
f3b5726
 
 
 
 
b53446d
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
# Importing required libraries
import warnings
warnings.filterwarnings("ignore")

import os
import json
import subprocess
import sys
from typing import List, Tuple
from llama_cpp import Llama
from llama_cpp_agent import LlamaCppAgent
from llama_cpp_agent import MessagesFormatterType
from llama_cpp_agent.providers import LlamaCppPythonProvider
from llama_cpp_agent.chat_history import BasicChatHistory
from llama_cpp_agent.chat_history.messages import Roles
from huggingface_hub import hf_hub_download
import gradio as gr
from logger import logging
from exception import CustomExceptionHandling


# Download gguf model files
if not os.path.exists("./models"):
    os.makedirs("./models")

hf_hub_download(
    repo_id="bartowski/SmolLM2-135M-Instruct-GGUF",
    filename="SmolLM2-135M-Instruct-Q6_K.gguf",
    local_dir="./models",
)
hf_hub_download(
    repo_id="bartowski/SmolLM2-360M-Instruct-GGUF",
    filename="SmolLM2-360M-Instruct-Q6_K.gguf",
    local_dir="./models",
)


# Set the title and description
title = "SmolLM🤗 Llama.cpp"
description = """**[SmolLM2](https://huggingface.co/collections/HuggingFaceTB/smollm2-6723884218bcda64b34d7db9)**, a family of three small language models, performs well in instruction following and reasoning. The largest model significantly improves over its predecessor through advanced training techniques.
This interactive chat interface allows you to experiment with the [`SmolLM2-360M-Instruct`](https://huggingface.co/HuggingFaceTB/SmolLM2-360M-Instruct) and [`SmolLM2-135M-Instruct`](https://huggingface.co/HuggingFaceTB/SmolLM2-135M-Instruct) text models using various prompts and generation parameters.
Users can select different model variants (GGUF format), system prompts, and observe generated responses in real-time. 
Key generation parameters, such as ⁣`temperature`, `max_tokens`, `top_k` and others are exposed below for tuning model behavior."""


llm = None
llm_model = None

def respond(
    message: str,
    history: List[Tuple[str, str]],
    model: str = "SmolLM2-135M-Instruct-Q6_K.gguf",  # Set default model
    system_message: str = "You are a helpful assistant.",
    max_tokens: int = 1024,
    temperature: float = 0.7,
    top_p: float = 0.95,
    top_k: int = 40,
    repeat_penalty: float = 1.1,
):
    """
    Respond to a message using the SmolLM2 model via Llama.cpp.

    Args:
        - message (str): The message to respond to.
        - history (List[Tuple[str, str]]): The chat history.
        - model (str): The model to use.
        - system_message (str): The system message to use.
        - max_tokens (int): The maximum number of tokens to generate.
        - temperature (float): The temperature of the model.
        - top_p (float): The top-p of the model.
        - top_k (int): The top-k of the model.
        - repeat_penalty (float): The repetition penalty of the model.

    Returns:
        str: The response to the message.
    """
    try:
        # Load the global variables
        global llm
        global llm_model

        # Ensure model is not None
        if model is None:
            model = "SmolLM2-135M-Instruct-Q6_K.gguf"

        # Load the model
        if llm is None or llm_model != model:
            # Check if model file exists
            model_path = f"models/{model}"
            if not os.path.exists(model_path):
                yield f"Error: Model file not found at {model_path}. Please check your model path."
                return

            llm = Llama(
                model_path=f"models/{model}",
                flash_attn=False,
                n_gpu_layers=0,
                n_batch=8,
                n_ctx=2048,
                n_threads=8,
                n_threads_batch=8,
            )
            llm_model = model
        provider = LlamaCppPythonProvider(llm)

        # Create the agent
        agent = LlamaCppAgent(
            provider,
            system_prompt=f"{system_message}",
            predefined_messages_formatter_type=MessagesFormatterType.CHATML,
            debug_output=True,
        )

        # Set the settings like temperature, top-k, top-p, max tokens, etc.
        settings = provider.get_provider_default_settings()
        settings.temperature = temperature
        settings.top_k = top_k
        settings.top_p = top_p
        settings.max_tokens = max_tokens
        settings.repeat_penalty = repeat_penalty
        settings.stream = True

        messages = BasicChatHistory()

        # Add the chat history
        for msn in history:
            user = {"role": Roles.user, "content": msn[0]}
            assistant = {"role": Roles.assistant, "content": msn[1]}
            messages.add_message(user)
            messages.add_message(assistant)

        # Get the response stream
        stream = agent.get_chat_response(
            message,
            llm_sampling_settings=settings,
            chat_history=messages,
            returns_streaming_generator=True,
            print_output=False,
        )

        # Log the success
        logging.info("Response stream generated successfully")

        # Generate the response
        outputs = ""
        for output in stream:
            outputs += output
            yield outputs

    # Handle exceptions that may occur during the process
    except Exception as e:
        # Custom exception handling
        raise CustomExceptionHandling(e, sys) from e


# Create a chat interface
demo = gr.ChatInterface(
    respond,
    examples=[["What is the capital of France?"], ["Tell me something about artificial intelligence."], ["What is gravity?"]],
    additional_inputs_accordion=gr.Accordion(
        label="⚙️ Parameters", open=False, render=False
    ),
    additional_inputs=[
        gr.Dropdown(
            choices=[
                "SmolLM2-135M-Instruct-Q6_K.gguf",
                "SmolLM2-360M-Instruct-Q6_K.gguf",
            ],
            value="SmolLM2-135M-Instruct-Q6_K.gguf",
            label="Model",
            info="Select the AI model to use for chat",
        ),
        gr.Textbox(
            value="You are a helpful AI assistant focused on accurate and ethical responses.",
            label="System Prompt",
            info="Define the AI assistant's personality and behavior",
            lines=2,
        ),
        gr.Slider(
            minimum=512,
            maximum=2048,
            value=1024,
            step=1,
            label="Max Tokens",
            info="Maximum length of response (higher = longer replies)",
        ),
        gr.Slider(
            minimum=0.1,
            maximum=2.0,
            value=0.7,
            step=0.1,
            label="Temperature",
            info="Creativity level (higher = more creative, lower = more focused)",
        ),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p",
            info="Nucleus sampling threshold",
        ),
        gr.Slider(
            minimum=1,
            maximum=100,
            value=40,
            step=1,
            label="Top-k",
            info="Limit vocabulary choices to top K tokens",
        ),
        gr.Slider(
            minimum=1.0,
            maximum=2.0,
            value=1.1,
            step=0.1,
            label="Repetition Penalty",
            info="Penalize repeated words (higher = less repetition)",
        ),
    ],
    theme="Ocean",
    submit_btn="Send",
    stop_btn="Stop",
    title=title,
    description=description,
    chatbot=gr.Chatbot(scale=1, show_copy_button=True, resizable=True),
    flagging_mode="never",
    editable=True,
    cache_examples=False,
)


# Launch the chat interface
if __name__ == "__main__":
    demo.launch(
        share=False,
        server_name="0.0.0.0",
        server_port=7860,
        show_api=False,
    )