Spaces:
Running
Running
File size: 7,858 Bytes
f3b5726 afdbd29 f3b5726 b53446d f3b5726 1b16d82 f3b5726 b53446d f3b5726 b53446d f3b5726 ec22521 f3b5726 ec22521 f3b5726 2678864 f3b5726 e5c7e80 1f1c451 f3b5726 2678864 f3b5726 b53446d f3b5726 b53446d f3b5726 b53446d f3b5726 d47afee 9e3ae03 2678864 f3b5726 25cf50e f3b5726 ec22521 f3b5726 ec22521 f3b5726 9e3ae03 f3b5726 b53446d f3b5726 b53446d f3b5726 b53446d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
# Importing required libraries
import warnings
warnings.filterwarnings("ignore")
import os
import json
import subprocess
import sys
from typing import List, Tuple
from llama_cpp import Llama
from llama_cpp_agent import LlamaCppAgent
from llama_cpp_agent import MessagesFormatterType
from llama_cpp_agent.providers import LlamaCppPythonProvider
from llama_cpp_agent.chat_history import BasicChatHistory
from llama_cpp_agent.chat_history.messages import Roles
from huggingface_hub import hf_hub_download
import gradio as gr
from logger import logging
from exception import CustomExceptionHandling
# Download gguf model files
if not os.path.exists("./models"):
os.makedirs("./models")
hf_hub_download(
repo_id="bartowski/SmolLM2-135M-Instruct-GGUF",
filename="SmolLM2-135M-Instruct-Q6_K.gguf",
local_dir="./models",
)
hf_hub_download(
repo_id="bartowski/SmolLM2-360M-Instruct-GGUF",
filename="SmolLM2-360M-Instruct-Q6_K.gguf",
local_dir="./models",
)
# Set the title and description
title = "SmolLM🤗 Llama.cpp"
description = """**[SmolLM2](https://huggingface.co/collections/HuggingFaceTB/smollm2-6723884218bcda64b34d7db9)**, a family of three small language models, performs well in instruction following and reasoning. The largest model significantly improves over its predecessor through advanced training techniques.
This interactive chat interface allows you to experiment with the [`SmolLM2-360M-Instruct`](https://huggingface.co/HuggingFaceTB/SmolLM2-360M-Instruct) and [`SmolLM2-135M-Instruct`](https://huggingface.co/HuggingFaceTB/SmolLM2-135M-Instruct) text models using various prompts and generation parameters.
Users can select different model variants (GGUF format), system prompts, and observe generated responses in real-time.
Key generation parameters, such as `temperature`, `max_tokens`, `top_k` and others are exposed below for tuning model behavior."""
llm = None
llm_model = None
def respond(
message: str,
history: List[Tuple[str, str]],
model: str = "SmolLM2-135M-Instruct-Q6_K.gguf", # Set default model
system_message: str = "You are a helpful assistant.",
max_tokens: int = 1024,
temperature: float = 0.7,
top_p: float = 0.95,
top_k: int = 40,
repeat_penalty: float = 1.1,
):
"""
Respond to a message using the SmolLM2 model via Llama.cpp.
Args:
- message (str): The message to respond to.
- history (List[Tuple[str, str]]): The chat history.
- model (str): The model to use.
- system_message (str): The system message to use.
- max_tokens (int): The maximum number of tokens to generate.
- temperature (float): The temperature of the model.
- top_p (float): The top-p of the model.
- top_k (int): The top-k of the model.
- repeat_penalty (float): The repetition penalty of the model.
Returns:
str: The response to the message.
"""
try:
# Load the global variables
global llm
global llm_model
# Ensure model is not None
if model is None:
model = "SmolLM2-135M-Instruct-Q6_K.gguf"
# Load the model
if llm is None or llm_model != model:
# Check if model file exists
model_path = f"models/{model}"
if not os.path.exists(model_path):
yield f"Error: Model file not found at {model_path}. Please check your model path."
return
llm = Llama(
model_path=f"models/{model}",
flash_attn=False,
n_gpu_layers=0,
n_batch=8,
n_ctx=2048,
n_threads=8,
n_threads_batch=8,
)
llm_model = model
provider = LlamaCppPythonProvider(llm)
# Create the agent
agent = LlamaCppAgent(
provider,
system_prompt=f"{system_message}",
predefined_messages_formatter_type=MessagesFormatterType.CHATML,
debug_output=True,
)
# Set the settings like temperature, top-k, top-p, max tokens, etc.
settings = provider.get_provider_default_settings()
settings.temperature = temperature
settings.top_k = top_k
settings.top_p = top_p
settings.max_tokens = max_tokens
settings.repeat_penalty = repeat_penalty
settings.stream = True
messages = BasicChatHistory()
# Add the chat history
for msn in history:
user = {"role": Roles.user, "content": msn[0]}
assistant = {"role": Roles.assistant, "content": msn[1]}
messages.add_message(user)
messages.add_message(assistant)
# Get the response stream
stream = agent.get_chat_response(
message,
llm_sampling_settings=settings,
chat_history=messages,
returns_streaming_generator=True,
print_output=False,
)
# Log the success
logging.info("Response stream generated successfully")
# Generate the response
outputs = ""
for output in stream:
outputs += output
yield outputs
# Handle exceptions that may occur during the process
except Exception as e:
# Custom exception handling
raise CustomExceptionHandling(e, sys) from e
# Create a chat interface
demo = gr.ChatInterface(
respond,
examples=[["What is the capital of France?"], ["Tell me something about artificial intelligence."], ["What is gravity?"]],
additional_inputs_accordion=gr.Accordion(
label="⚙️ Parameters", open=False, render=False
),
additional_inputs=[
gr.Dropdown(
choices=[
"SmolLM2-135M-Instruct-Q6_K.gguf",
"SmolLM2-360M-Instruct-Q6_K.gguf",
],
value="SmolLM2-135M-Instruct-Q6_K.gguf",
label="Model",
info="Select the AI model to use for chat",
),
gr.Textbox(
value="You are a helpful AI assistant focused on accurate and ethical responses.",
label="System Prompt",
info="Define the AI assistant's personality and behavior",
lines=2,
),
gr.Slider(
minimum=512,
maximum=2048,
value=1024,
step=1,
label="Max Tokens",
info="Maximum length of response (higher = longer replies)",
),
gr.Slider(
minimum=0.1,
maximum=2.0,
value=0.7,
step=0.1,
label="Temperature",
info="Creativity level (higher = more creative, lower = more focused)",
),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p",
info="Nucleus sampling threshold",
),
gr.Slider(
minimum=1,
maximum=100,
value=40,
step=1,
label="Top-k",
info="Limit vocabulary choices to top K tokens",
),
gr.Slider(
minimum=1.0,
maximum=2.0,
value=1.1,
step=0.1,
label="Repetition Penalty",
info="Penalize repeated words (higher = less repetition)",
),
],
theme="Ocean",
submit_btn="Send",
stop_btn="Stop",
title=title,
description=description,
chatbot=gr.Chatbot(scale=1, show_copy_button=True, resizable=True),
flagging_mode="never",
editable=True,
cache_examples=False,
)
# Launch the chat interface
if __name__ == "__main__":
demo.launch(
share=False,
server_name="0.0.0.0",
server_port=7860,
show_api=False,
)
|