import os, torch from kolors.pipelines.pipeline_stable_diffusion_xl_chatglm_256 import StableDiffusionXLPipeline from kolors.models.modeling_chatglm import ChatGLMModel from kolors.models.tokenization_chatglm import ChatGLMTokenizer from diffusers import UNet2DConditionModel, AutoencoderKL from diffusers import EulerDiscreteScheduler from peft import ( LoraConfig, PeftModel, ) def infer(prompt): ckpt_dir = "/path/base_model_path" lora_ckpt = 'trained_models/ktxl_dog_text/checkpoint-1000/' load_text_encoder = True text_encoder = ChatGLMModel.from_pretrained( f'{ckpt_dir}/text_encoder', torch_dtype=torch.float16).half() tokenizer = ChatGLMTokenizer.from_pretrained(f'{ckpt_dir}/text_encoder') vae = AutoencoderKL.from_pretrained(f"{ckpt_dir}/vae", revision=None).half() scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler") unet = UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half() pipe = StableDiffusionXLPipeline( vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, force_zeros_for_empty_prompt=False) pipe = pipe.to("cuda") pipe.load_lora_weights(lora_ckpt, adapter_name="ktxl-lora") pipe.set_adapters(["ktxl-lora"], [0.8]) if load_text_encoder: pipe.text_encoder = PeftModel.from_pretrained(pipe.text_encoder, lora_ckpt) random_seed = 0 generator = torch.Generator(pipe.device).manual_seed(random_seed) neg_p = '' out = pipe(prompt, generator=generator, negative_prompt=neg_p, num_inference_steps=25, width=1024, height=1024, num_images_per_prompt=1, guidance_scale=5).images[0] out.save("ktxl_test_image.png") if __name__ == '__main__': import fire fire.Fire(infer)