## 📖 Introduction We Provide LoRA training and inference code based on [Kolors-Basemodel](https://huggingface.co/Kwai-Kolors/Kolors), along with an IP LoRA training example.
Example Result
Prompt Result Image
ktxl狗在草地上跑。


**Our improvements** - Supporting user-defined caption files. By putting the '.txt' file with the same name as the image file in the same directory, the caption file will be automatically matched with the proper image ## 🛠️ Usage ### Requirements The dependencies and installation are basically the same as the [Kolors-BaseModel](https://huggingface.co/Kwai-Kolors/Kolors). 1. Repository Cloning and Dependency Installation ```bash apt-get install git-lfs git clone https://github.com/Kwai-Kolors/Kolors cd Kolors conda create --name kolors python=3.8 conda activate kolors pip install -r requirements.txt python3 setup.py install ``` ### Training 1. First, we need to get our datasaet.https://huggingface.co/datasets/diffusers/dog-example. ```python from huggingface_hub import snapshot_download local_dir = "./dog" snapshot_download( "diffusers/dog-example", local_dir=local_dir, repo_type="dataset", ignore_patterns=".gitattributes", ) ``` **___Note: To load caption files automatically during training, you can use the same name for both the image and its corresponding '.txt' caption file.___** 2. Launch the training using: ```bash sh train.sh ``` 3. Training configuration. We train the model using the default configuration in the `train.sh` file on 8 V100 GPUs, consuming a total of 27GB of the memory. You can also finetune the text encoder by adding `--train_text_encoder`: ```bash MODEL_NAME="/path/base_model_path" CLASS_DIR="/path/regularization_image_path" INSTANCE_DIR="path/training_image_path" OUTPUT_DIR="./trained_models" cfg_file=./default_config.yaml accelerate launch --config_file ${cfg_file} train_dreambooth_lora.py \ --pretrained_model_name_or_path=$MODEL_NAME \ --instance_data_dir=$INSTANCE_DIR \ --output_dir=$OUTPUT_DIR \ --class_data_dir=$CLASS_DIR \ --instance_prompt="ktxl狗" \ --class_prompt="狗" \ --train_batch_size=1 \ --gradient_accumulation_steps=1 \ --learning_rate=2e-5 \ --text_encoder_lr=5e-5 \ --lr_scheduler="polynomial" \ --lr_warmup_steps=100 \ --rank=4 \ --resolution=1024 \ --max_train_steps=2000 \ --checkpointing_steps=200 \ --num_class_images=100 \ --center_crop \ --mixed_precision='fp16' \ --seed=19980818 \ --img_repeat_nums=1 \ --sample_batch_size=2 \ --use_preffix_prompt \ --gradient_checkpointing \ --train_text_encoder \ --adam_weight_decay=1e-02 \ --with_prior_preservation \ --prior_loss_weight=0.7 \ ``` **___Note: Most of our training configurations stay the same with official [diffusers](https://github.com/huggingface/diffusers/tree/main/examples/dreambooth) .___** ### Inference ```bash python infer_dreambooth.py "ktxl狗在草地上跑" ```