|
import os, torch |
|
from kolors.pipelines.pipeline_stable_diffusion_xl_chatglm_256 import StableDiffusionXLPipeline |
|
from kolors.models.modeling_chatglm import ChatGLMModel |
|
from kolors.models.tokenization_chatglm import ChatGLMTokenizer |
|
from diffusers import UNet2DConditionModel, AutoencoderKL |
|
from diffusers import EulerDiscreteScheduler |
|
|
|
from peft import ( |
|
LoraConfig, |
|
PeftModel, |
|
) |
|
|
|
def infer(prompt): |
|
ckpt_dir = "/path/base_model_path" |
|
lora_ckpt = 'trained_models/ktxl_dog_text/checkpoint-1000/' |
|
load_text_encoder = True |
|
|
|
text_encoder = ChatGLMModel.from_pretrained( |
|
f'{ckpt_dir}/text_encoder', |
|
torch_dtype=torch.float16).half() |
|
tokenizer = ChatGLMTokenizer.from_pretrained(f'{ckpt_dir}/text_encoder') |
|
vae = AutoencoderKL.from_pretrained(f"{ckpt_dir}/vae", revision=None).half() |
|
scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler") |
|
unet = UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half() |
|
pipe = StableDiffusionXLPipeline( |
|
vae=vae, |
|
text_encoder=text_encoder, |
|
tokenizer=tokenizer, |
|
unet=unet, |
|
scheduler=scheduler, |
|
force_zeros_for_empty_prompt=False) |
|
pipe = pipe.to("cuda") |
|
|
|
pipe.load_lora_weights(lora_ckpt, adapter_name="ktxl-lora") |
|
pipe.set_adapters(["ktxl-lora"], [0.8]) |
|
|
|
if load_text_encoder: |
|
pipe.text_encoder = PeftModel.from_pretrained(pipe.text_encoder, lora_ckpt) |
|
|
|
random_seed = 0 |
|
generator = torch.Generator(pipe.device).manual_seed(random_seed) |
|
|
|
neg_p = '' |
|
out = pipe(prompt, generator=generator, negative_prompt=neg_p, num_inference_steps=25, width=1024, height=1024, num_images_per_prompt=1, guidance_scale=5).images[0] |
|
out.save("ktxl_test_image.png") |
|
|
|
if __name__ == '__main__': |
|
import fire |
|
fire.Fire(infer) |