File size: 6,645 Bytes
e86290c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
# -*- coding: utf-8 -*-
"""
@author:XuMing([email protected])
@description:
"""
from similarities import Similarity
from textgen import ChatGlmModel, LlamaModel
PROMPT_TEMPLATE = """\
基于以下已知信息,简洁和专业的来回答用户的问题。
如果无法从中得到答案,请说 "根据已知信息无法回答该问题" 或 "没有提供足够的相关信息",不允许在答案中添加编造成分,答案请使用中文。
已知内容:
{context_str}
问题:
{query_str}
"""
class ChatPDF:
def __init__(
self,
sim_model_name_or_path: str = "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2",
gen_model_type: str = "chatglm",
gen_model_name_or_path: str = "THUDM/chatglm-6b-int4",
lora_model_name_or_path: str = None,
):
self.sim_model = Similarity(model_name_or_path=sim_model_name_or_path)
if gen_model_type == "chatglm":
self.gen_model = ChatGlmModel(gen_model_type, gen_model_name_or_path, lora_name=lora_model_name_or_path)
elif gen_model_type == "llama":
self.gen_model = LlamaModel(gen_model_type, gen_model_name_or_path, lora_name=lora_model_name_or_path)
else:
raise ValueError('gen_model_type must be chatglm or llama.')
self.history = None
self.pdf_path = None
def load_pdf_file(self, pdf_path: str):
"""Load a PDF file."""
if pdf_path.endswith('.pdf'):
corpus = self.extract_text_from_pdf(pdf_path)
elif pdf_path.endswith('.docx'):
corpus = self.extract_text_from_docx(pdf_path)
elif pdf_path.endswith('.md'):
corpus = self.extract_text_from_markdown(pdf_path)
else:
corpus = self.extract_text_from_txt(pdf_path)
self.sim_model.add_corpus(corpus)
self.pdf_path = pdf_path
@staticmethod
def extract_text_from_pdf(file_path: str):
"""Extract text content from a PDF file."""
import PyPDF2
contents = []
with open(file_path, 'rb') as f:
pdf_reader = PyPDF2.PdfReader(f)
for page in pdf_reader.pages:
page_text = page.extract_text().strip()
raw_text = [text.strip() for text in page_text.splitlines() if text.strip()]
new_text = ''
for text in raw_text:
new_text += text
if text[-1] in ['.', '!', '?', '。', '!', '?', '…', ';', ';', ':', ':', '”', '’', ')', '】', '》', '」',
'』', '〕', '〉', '》', '〗', '〞', '〟', '»', '"', "'", ')', ']', '}']:
contents.append(new_text)
new_text = ''
if new_text:
contents.append(new_text)
return contents
@staticmethod
def extract_text_from_txt(file_path: str):
"""Extract text content from a TXT file."""
contents = []
with open(file_path, 'r', encoding='utf-8') as f:
contents = [text.strip() for text in f.readlines() if text.strip()]
return contents
@staticmethod
def extract_text_from_docx(file_path: str):
"""Extract text content from a DOCX file."""
import docx
document = docx.Document(file_path)
contents = [paragraph.text.strip() for paragraph in document.paragraphs if paragraph.text.strip()]
return contents
@staticmethod
def extract_text_from_markdown(file_path: str):
"""Extract text content from a Markdown file."""
import markdown
from bs4 import BeautifulSoup
with open(file_path, 'r', encoding='utf-8') as f:
markdown_text = f.read()
html = markdown.markdown(markdown_text)
soup = BeautifulSoup(html, 'html.parser')
contents = [text.strip() for text in soup.get_text().splitlines() if text.strip()]
return contents
@staticmethod
def _add_source_numbers(lst):
"""Add source numbers to a list of strings."""
return [f'[{idx + 1}]\t "{item}"' for idx, item in enumerate(lst)]
def _generate_answer(self, query_str, context_str, history=None, max_length=1024):
"""Generate answer from query and context."""
prompt = PROMPT_TEMPLATE.format(context_str=context_str, query_str=query_str)
response, out_history = self.gen_model.chat(prompt, history, max_length=max_length)
return response, out_history
def query(
self,
query,
topn: int = 5,
max_length: int = 1024,
max_input_size: int = 1024,
use_history: bool = False
):
"""Query from corpus."""
sim_contents = self.sim_model.most_similar(query, topn=topn)
reference_results = []
for query_id, id_score_dict in sim_contents.items():
for corpus_id, s in id_score_dict.items():
reference_results.append(self.sim_model.corpus[corpus_id])
if not reference_results:
return '没有提供足够的相关信息', reference_results
reference_results = self._add_source_numbers(reference_results)
context_str = '\n'.join(reference_results)[:(max_input_size - len(PROMPT_TEMPLATE))]
if use_history:
response, out_history = self._generate_answer(query, context_str, self.history, max_length=max_length)
self.history = out_history
else:
response, out_history = self._generate_answer(query, context_str)
return response, out_history, reference_results
def save_index(self, index_path=None):
"""Save model."""
if index_path is None:
index_path = '.'.join(self.pdf_path.split('.')[:-1]) + '_index.json'
self.sim_model.save_index(index_path)
def load_index(self, index_path=None):
"""Load model."""
if index_path is None:
index_path = '.'.join(self.pdf_path.split('.')[:-1]) + '_index.json'
self.sim_model.load_index(index_path)
if __name__ == "__main__":
import sys
if len(sys.argv) > 2:
gen_model_name_or_path = sys.argv[1]
else:
print('Usage: python chatpdf.py <gen_model_name_or_path>')
gen_model_name_or_path = "THUDM/chatglm-6b-int4"
m = ChatPDF(gen_model_name_or_path=gen_model_name_or_path)
m.load_pdf_file(pdf_path='sample.pdf')
response = m.query('自然语言中的非平行迁移是指什么?')
print(response[0])
response = m.query('本文作者是谁?')
print(response[0]) |