File size: 6,645 Bytes
e86290c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
# -*- coding: utf-8 -*-
"""
@author:XuMing([email protected])
@description: 
"""
from similarities import Similarity
from textgen import ChatGlmModel, LlamaModel

PROMPT_TEMPLATE = """\
基于以下已知信息,简洁和专业的来回答用户的问题。
如果无法从中得到答案,请说 "根据已知信息无法回答该问题" 或 "没有提供足够的相关信息",不允许在答案中添加编造成分,答案请使用中文。

已知内容:
{context_str}

问题:
{query_str}
"""


class ChatPDF:
    def __init__(
            self,
            sim_model_name_or_path: str = "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2",
            gen_model_type: str = "chatglm",
            gen_model_name_or_path: str = "THUDM/chatglm-6b-int4",
            lora_model_name_or_path: str = None,

    ):
        self.sim_model = Similarity(model_name_or_path=sim_model_name_or_path)

        if gen_model_type == "chatglm":
            self.gen_model = ChatGlmModel(gen_model_type, gen_model_name_or_path, lora_name=lora_model_name_or_path)
        elif gen_model_type == "llama":
            self.gen_model = LlamaModel(gen_model_type, gen_model_name_or_path, lora_name=lora_model_name_or_path)
        else:
            raise ValueError('gen_model_type must be chatglm or llama.')
        self.history = None
        self.pdf_path = None

    def load_pdf_file(self, pdf_path: str):
        """Load a PDF file."""
        if pdf_path.endswith('.pdf'):
            corpus = self.extract_text_from_pdf(pdf_path)
        elif pdf_path.endswith('.docx'):
            corpus = self.extract_text_from_docx(pdf_path)
        elif pdf_path.endswith('.md'):
            corpus = self.extract_text_from_markdown(pdf_path)
        else:
            corpus = self.extract_text_from_txt(pdf_path)
        self.sim_model.add_corpus(corpus)
        self.pdf_path = pdf_path

    @staticmethod
    def extract_text_from_pdf(file_path: str):
        """Extract text content from a PDF file."""
        import PyPDF2
        contents = []
        with open(file_path, 'rb') as f:
            pdf_reader = PyPDF2.PdfReader(f)
            for page in pdf_reader.pages:
                page_text = page.extract_text().strip()
                raw_text = [text.strip() for text in page_text.splitlines() if text.strip()]
                new_text = ''
                for text in raw_text:
                    new_text += text
                    if text[-1] in ['.', '!', '?', '。', '!', '?', '…', ';', ';', ':', ':', '”', '’', ')', '】', '》', '」',
                                    '』', '〕', '〉', '》', '〗', '〞', '〟', '»', '"', "'", ')', ']', '}']:
                        contents.append(new_text)
                        new_text = ''
                if new_text:
                    contents.append(new_text)
        return contents

    @staticmethod
    def extract_text_from_txt(file_path: str):
        """Extract text content from a TXT file."""
        contents = []
        with open(file_path, 'r', encoding='utf-8') as f:
            contents = [text.strip() for text in f.readlines() if text.strip()]
        return contents

    @staticmethod
    def extract_text_from_docx(file_path: str):
        """Extract text content from a DOCX file."""
        import docx
        document = docx.Document(file_path)
        contents = [paragraph.text.strip() for paragraph in document.paragraphs if paragraph.text.strip()]
        return contents

    @staticmethod
    def extract_text_from_markdown(file_path: str):
        """Extract text content from a Markdown file."""
        import markdown
        from bs4 import BeautifulSoup
        with open(file_path, 'r', encoding='utf-8') as f:
            markdown_text = f.read()
        html = markdown.markdown(markdown_text)
        soup = BeautifulSoup(html, 'html.parser')
        contents = [text.strip() for text in soup.get_text().splitlines() if text.strip()]
        return contents

    @staticmethod
    def _add_source_numbers(lst):
        """Add source numbers to a list of strings."""
        return [f'[{idx + 1}]\t "{item}"' for idx, item in enumerate(lst)]

    def _generate_answer(self, query_str, context_str, history=None, max_length=1024):
        """Generate answer from query and context."""
        prompt = PROMPT_TEMPLATE.format(context_str=context_str, query_str=query_str)
        response, out_history = self.gen_model.chat(prompt, history, max_length=max_length)
        return response, out_history

    def query(
            self,
            query,
            topn: int = 5,
            max_length: int = 1024,
            max_input_size: int = 1024,
            use_history: bool = False
    ):
        """Query from corpus."""

        sim_contents = self.sim_model.most_similar(query, topn=topn)

        reference_results = []
        for query_id, id_score_dict in sim_contents.items():
            for corpus_id, s in id_score_dict.items():
                reference_results.append(self.sim_model.corpus[corpus_id])
        if not reference_results:
            return '没有提供足够的相关信息', reference_results
        reference_results = self._add_source_numbers(reference_results)

        context_str = '\n'.join(reference_results)[:(max_input_size - len(PROMPT_TEMPLATE))]

        if use_history:
            response, out_history = self._generate_answer(query, context_str, self.history, max_length=max_length)
            self.history = out_history
        else:

            response, out_history = self._generate_answer(query, context_str)

        return response, out_history, reference_results

    def save_index(self, index_path=None):
        """Save model."""
        if index_path is None:
            index_path = '.'.join(self.pdf_path.split('.')[:-1]) + '_index.json'
        self.sim_model.save_index(index_path)

    def load_index(self, index_path=None):
        """Load model."""
        if index_path is None:
            index_path = '.'.join(self.pdf_path.split('.')[:-1]) + '_index.json'
        self.sim_model.load_index(index_path)


if __name__ == "__main__":
    import sys

    if len(sys.argv) > 2:
        gen_model_name_or_path = sys.argv[1]
    else:
        print('Usage: python chatpdf.py <gen_model_name_or_path>')
        gen_model_name_or_path = "THUDM/chatglm-6b-int4"
    m = ChatPDF(gen_model_name_or_path=gen_model_name_or_path)
    m.load_pdf_file(pdf_path='sample.pdf')
    response = m.query('自然语言中的非平行迁移是指什么?')
    print(response[0])
    response = m.query('本文作者是谁?')
    print(response[0])